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Abstract

Security may be compromised when humans make mistakes at the user interface.
Cleartext is mistakenly sent to correspondents, sensitive files are left unprotected,
and erroneously configured systems are left vulnerable to attackers. Such mistakes
may be blamed on human error, but the regularity of human error suggests that
mistakes may be preventable through better interface design. Certain user interface
constructs drive users toward error, while others facilitate success.

Two security-sensitive user interfaces were evaluated in a laboratory user study:
the Windows XP file-permissions interface and an alternative interface, called Salmon,
designed in accordance with an error-avoiding principle to counteract the mislead-
ing constructs in the XP interface. The alternative interface was found to be more
dependable; it increased successful task completion by up to 300%, reduced com-
mission of a class of errors by up to 94%, and provided a nearly 3x speed-up in task
completion time. Moreover, users spent less time searching for information with the
alternative interface, and a greater proportion of time on essential task steps. An
explanatory theory in its early stages of development is presented.

Key words: computer security, dependability, external representation, external
subgoal support, file permissions, goal error, human error, user interfaces

1 Introduction

One locus of vulnerability in a computer system is an undependable user in-
terface – one that does not meet its specification in terms of the speed or
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accuracy with which users should complete tasks. One reason why some user
interfaces fail to meet their speed and accuracy specifications is human error.
Researchers have long recognized that human error has causes and manifes-
tations that are similar across all domains of human endeavor, from aviation,
to power plant operation, to making a cup of tea (Wiegmann and Shappell
(2003); Reason (1990); Senders and Moray (1991); Norman (1988)). In the
domain of software user interfaces, human error leads people off the path of
correctly completing a task and on to lengthy task delays or total task failure.
There is a need for user-interface designers to understand the common types
and causes of human error, and the ways in which they may be prevented.
When interfaces are designed to eliminate the conditions that lead people to
make mistakes, interfaces will be more dependable, and the applications they
serve will be more secure.

One domain in which user interface accuracy is critically important is com-
puter security. Inaccurate security settings can have a high cost - they can
make sensitive data vulnerable, or they can leave an entire system open to
attack. Adding to this cost, security problems have what Whitten and Tygar
(1999) have called the “barn door property” - once a system has had a vulnera-
bility for any length of time, there may be no way to know if the vulnerability
has been exploited, so the system will have to be considered compromised,
whether it has been or not.

The present work investigates user interface dependability and human error in
the security context of setting file permissions under Microsoft’s Windows XP
operating system, which uses Microsoft’s NT file system (NTFS). NTFS file
permissions were chosen as the domain of study because a significant amount
of anecdotal evidence suggests that setting NTFS file permissions is a particu-
larly error-prone task for which the consequences of failure can be severe. For
example, there is the so-called “Memogate” scandal, in which staffers from
one political party on the United States Senate Judiciary Committee stole
confidential memos from the opposing party (U.S. Senate Sergeant at Arms,
2004). The memos were stored on a shared NTFS server. The theft was pos-
sible in part because an inexperienced system administrator had failed to set
permissions correctly on the shared server. As another example, a Windows
network administrator at Carnegie Mellon University reports that many users
want to share their files so they can access them both at work and at home;
they accidentally make their private files accessible to all (several hundred)
users on the network, because it is too confusing to set permissions as actually
desired (Smith, 2004). Finally, Microsoft publishes a list of “best practices” for
NTFS security that advises users not to use several of the provided features
of the NTFS permissions model, such as negative (i.e., deny) permissions and
the ability to set permissions on individual files as opposed to folders (Mi-
crosoft Corporation, 2005a). The best-practices document states that use of
these features “... could cause unexpected access problems or reduce security.”
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Providing access to features which are apparently problematic is bound to lead
to errors.

As these anecdotes indicate, setting and checking permissions cannot always
be left to expert system administrators – users in many environments need or
want to take responsibility for protecting their own files. However, setting file
permissions is not an everyday task; it may need to be done only every few
weeks or months. Thus, those setting file permissions will often not be expert
system administrators; they will be novice or occasional users who, from time
to time, want to restrict access to data or to grant access for only a limited
number of associates. They will not readily remember arcane details about
how to operate a file-permissions-setting interface. The present work adopts
the underlying assumption that file-permissions-setting interfaces should ac-
commodate novice and occasional users.

This paper reports results of an investigation into and a solution for one type of
human error encountered in file-permissions setting interfaces. First, an exist-
ing interface for setting NTFS permissions, the Windows XP File Permissions
interface (hereafter abbreviated XPFP), was evaluated in a laboratory user
study and shown to have accuracy rates as low as 25% on file-permissions-
setting tasks. Errors made by users in the XPFP interface were identified and
categorized into types according to an established human-error framework.
Goal errors, the failures of users to understand what to do, were identified
as the dominant type of error. A primary cause of goal errors, namely poor
external representation of task-relevant information, was identified. A design
principle, external subgoal support, was proposed to reduce goal errors and
was implemented in a new interface, called Salmon, for setting NTFS file per-
missions. The design principle was evaluated in a laboratory user study iden-
tical in design to the XPFP study but employing the new interface. Salmon
achieved a success rate of 100% on a task for which XPFP had achieved a 25%
accuracy rate, achieved a 94% reduction in the number of goal errors users
made on the same task, and achieved a nearly 3x task-performance speed-up
in another task, compared to XPFP.

2 Objective

The objective of the present work is to understand the causes of user error
in user interfaces generally, and file-permissions interfaces in particular. It
is a further objective to find a design method that can be applied to new
generations of user interfaces so that the same user errors are not encountered
again and again and again in future user interfaces.

A specific problem, poor external representation, was observed in the XPFP
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interface. It was expected that poor external representation would lead to user
goal errors, i.e., the incorrect establishment or omission of cognitive goals. A
solution was proposed to reduce the occurrence of goal errors. This solution,
called external subgoal support (see section 5), led to this paper’s hypothesis:

Use of external subgoal support in user interface design reduces the likeli-
hood that users will commit goal errors, thus improving task accuracy rates,
and reduces time spent looking for information, thus reducing time to task
completion. The combined improvements to speed and accuracy make the
interface more dependable for quick and accurate accomplishment of tasks.

Task success rates, goal-error occurrences, and times to task completion were
compared between the XPFP and Salmon studies to determine whether ex-
ternal subgoal support as implemented in Salmon was an effective means of
improving success, reducing goal errors, and improving task-completion speed.

3 Background and related work

Related work falls into three areas. The first is prior work on usable file per-
missions and usable access control. The second, a superset of the first, is work
in the emerging field of human-computer interaction and security, also known
as HCISEC. The third is the traditional literature on human-computer inter-
action and cognitive science.

File permissions are an instance of the broader area of access control, including
evaluation of interfaces for setting file access. Zurko et al. (1999) conducted
a user study on the Visual Policy Builder, a graphical user interface for spec-
ifying access control policies for their Adage system. Good and Krekelberg
(2003) showed that the Kazaa peer-to-peer file-sharing service’s interface mis-
led many users into unintentionally sharing confidential files. Long et al. (2003)
evaluated a preliminary, paper-based interface for limiting applications’ access
to system resources. While these three interface evaluations were interesting
in their specific task domains, none appear to lead to any conclusion about de-
sign principles for security interfaces in a larger context. Other work in usable
access control in various domains includes Balfanz (2003), Sampemane et al.
(2002), and Dewan and Shen (1998). With the exception of the Adage project
and Long et al., work in this area involves outlining access control models, not
evaluating access control interfaces, as the present work sets out to do.

In the broader human-computer interaction and security literature, those who
have acknowledged the challenges of designing dependable user interfaces in
security-related domains and have proposed principles for better security in-
terface design include Whitten and Tygar (1999), Adams and Sasse (1999),
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Besnard and Arief (2004), Zurko and Simon (1996), and Yee (2002). Such pa-
pers propose ideas for making security tasks easier to perform accurately, but
do not evaluate their ideas empirically. Whitten and Tygar (2003), in another
paper, present user-study results to validate a design principle for security in-
terfaces, but their principle, “safe staging,” is not related to external subgoal
support, nor does it appear to be grounded in a theory of human error.

The traditional human-computer interaction and cognitive science literature
contains a substantial amount of material on the importance of external rep-
resentations in supporting problem-solving tasks (Woods (1985); Woods and
Roth (1988); Zhang and Norman (1994); Zhang (1996, 1997); Ballard et al.
(1995); Nielsen and Mack (1994) and Norman (1988)). External representa-
tions are information displays (e.g., notes on paper, graphics on a monitor,
etc.) that reside outside the mind; they complement internal mental represen-
tations by providing additional memory capacity, cues to internal processes,
and information structures that allow patterns to be easily perceived. Good
external representations can facilitate fast and accurate problem solving, while
poor external representations can impede it. Mitchell and Miller (1986), for ex-
ample, suggest a methodology for information display design, although their
method is intended mainly for industrial domains with expert users, rather
than for novice and occasional users.

4 Example problem

The XPFP interface serves to illustrate the problem with user interfaces that
offer poor external representations of task-relevant information. Some back-
ground on the NTFS file-permissions model is necessary to fully understand
the XPFP interface and the errors it causes.

A computer system using NTFS will be populated with entities and objects.
The entities are individual users and groups of users on the system. The objects
are the files and folders on the system. NTFS defines 13 atomic permissions 1

that correspond to actions that users can perform on files and folders. The
precise meanings of the 13 NTFS atomic permissions are not relevant to this
paper, but are described in a Microsoft Technet article (Microsoft Corporation,
2005b). For purposes of this paper, it is sufficient to note that NTFS permis-
sions can be grouped into five disjoint sets: READ, WRITE, EXECUTE, DELETE, and
ADMINISTRATE. 2 NTFS uses an Access Control List (ACL) model of file per-

1 Note that NTFS documentation uses the term special permission where atomic

permission is used here. The latter term makes it clearer that these are indivisible
permissions, the lowest-level permissions in the system.
2 Note that the XPFP interface and NTFS documentation use a different, non-
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missions. Under the ACL model, each file and folder in the file system has an
associated list of users and groups who have permissions on that file or folder.

For each file and for each permission for that file, each user and group on the
file’s ACL has a permission value explicitly granted to them for that file and
that permission. Permissions are tri-valued, and can take on any of the follow-
ing values: ALLOW, DENY, or NOTSET; the NOTSET value indicates that neither
ALLOW nor DENY has been set. Under the rule of group inheritance, each user
also inherits permissions from the groups of which they are members. A user’s
actual access to a file is computed according to a formula that sums the user’s
explicit permissions and their inherited permissions according to precedence
rules. The precedence rules state that any DENY permission value takes prece-
dence over all other permission values, and any ALLOW permission value takes
precedence over any NOTSET permission value; NOTSET acts to deny access by
default. Group inheritance leads to the distinction between stated permissions,
the explicit permissions granted to each user, and effective permissions, the
actual access a user will be allowed according to the combination of stated
and inherited permissions.

It is the distinction between stated permissions and effective permissions that
makes setting NTFS file permissions a difficult task. The person setting per-
missions operates directly on the low-level stated-permissions bits, which do
not necessarily translate directly into the effective access that will be allowed
to system files. Actual access in NTFS is determined by the nuanced for-
mula alluded to above. However, users setting file permissions are ultimately
concerned with who can access what, not with low-level bits and nuanced for-
mulas. Thus users need to view the effective permissions in order to evaluate
when they have fully completed their primary goal, and when they still have
additional work to do to complete their goal.

Casual observation of the XPFP interface (see Figure 1) reveals that XPFP
does not provide ready access to needed information. First of all, not all of
the NTFS permissions are visible in the main XPFP window. ADMINISTRATE

and DELETE permissions are notably absent, and are hidden two screens away.
Without ADMINISTRATE and DELETE permissions visible on the main window,
some users may not even realize they exist. Secondly, XPFP does not pro-
vide the group membership data to indicate what groups individual users
belong to. For example, in Figure 1, Wesley is in the group ProjectF, but
there is no indication of this in the XPFP window. In fact, users need to use
an entirely different application to view group membership in Windows XP.
Without group membership information, even those few users who understand

disjoint grouping of the 13 atomic permissions into six composite sets. The disjoint
grouping discussed here is the authors’ own, and is used for clarity of presentation
to those readers not already familiar with the NTFS permissions model.
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Fig. 1. A screenshot of the XPFP interface, showing information and function-
ality for setting permissions bits. Effective permissions are not visible, nor is
group-membership information provided, making it virtually impossible for users
to verify the completion status of their goals.

the group inheritance rules will not be able to figure out whether Wesley is
inheriting permissions from ProjectF or not. Finally, the XPFP main window
contains the checkboxes necessary for setting the permissions bits that will be
used to determine effective permissions, but effective permissions themselves
are nowhere to be seen. In fact, XPFP has an effective-permissions display,
but it is two screens away, where hardly any non-expert user will find it. The
difficulty of accessing essential task-relevant information in XPFP is likely to
lead users into incorrectly determining when they have completed their goals,
or to leave them not knowing how to proceed toward task completion. With-
out a salient external representation of task-relevant information to cue users
toward proper behavior, users will be able to complete tasks only if they al-
ready have the information stored internally, or if they are fortunate enough
to happen upon the information elsewhere. Those who do not have the needed
information are likely to commit errors.

5 Solution - external subgoal support (ESS)

External subgoal support (ESS) is an interface design method rooted in cogni-
tive principles regarding the importance of external representations: see Woods
and Roth (1988); Zhang and Norman (1994); Zhang (1996, 1997); Ballard et al.

7



(1995). ESS was developed to ensure that all task-relevant information is rep-
resented saliently by the user interface, allowing users to check goal completion
status and set appropriate subgoals. When users do not set appropriate sub-
goals, they commit goal errors, one of several specific types of human error.
ESS mitigates one cause of goal errors by providing external cues as to what
to do. Goal errors are discussed in more detail in Section 7.4.

5.1 Description

For an understanding of the cognitive causes of goal errors, the present work
relies on Pocock et al.’s THEA – Technique for Human Error Assessment
(Pocock et al., 2001). THEA was developed to analyze a user interface design
for areas of potential user difficulty without conducting costly user studies. It
includes an error framework which is based on Norman’s well-known seven-
stage execution-evaluation model of human information processing (Norman,
1988). THEA condenses Norman’s seven stages down to four stages of infor-
mation processing during which human error can occur. These four stages are
the combination of perception, interpretation, and evaluation; goal formula-
tion; plan formulation; and action execution. According to the Norman/THEA
models, human information processing starts with a problem, the primary
goal, and proceeds in the following loop:

(1) Perceive and interpret information from the environment, and evaluate
whether the problem is solved;

(2) If the problem remains unsolved, formulate a subgoal, according to per-
ceived information, for solving all or part of the problem; if the problem
is solved, exit the loop;

(3) Formulate a plan to achieve the subgoal;
(4) Execute the actions in the plan.

Goal errors occur when the second step goes wrong. If the perceived informa-
tion consulted in the second step is incorrect or is misinterpreted, the wrong
subgoal may be set. If the wrong information is used to check whether the
problem has been solved in the second step, either an unnecessary subgoal
may be added (if the problem is assumed unsolved when it is already solved)
or a necessary subgoal may be omitted (if the problem is assumed solved when
it is not). Thus the availability of information to check progress toward the
primary goal is critical to correct selection of subgoals.

If incorrect, misleading, or missing information causes goal errors, the logical
solution is to make the necessary information available in a correct, easily
interpretable form. Indeed, researchers in cognitive science have shown the
significant effects that external (i.e., external to the human problem-solver)
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problem representations can have on human performance: see Woods and Roth
(1988); Zhang and Norman (1994); Zhang (1996, 1997); Ballard et al. (1995).
External representations not only serve as memory aids, but also play a central
role in shaping cognitive behavior (Zhang and Norman, 1994). Some represen-
tations of a problem lead to incorrect or slow problem-solving behavior, while
other representations facilitate correct and efficient problem-solving behavior.
Section 9 discusses how each of the user interfaces tested in the present study
influences users to engage either more or less in activities like information-
gathering, based on the information representations made available to the
users.

5.2 Design method

A prerequisite for implementing ESS is a careful task analysis. Kirwan (1994),
an excellent reference on how to perform task analyses, describes the Hierarchi-
cal Task Analysis (HTA) method, which includes a convenient representation
of the results of a formal task analysis. An HTA represents the task as a hier-
archy of goals and the operations that are needed to achieve them. At the root
of an HTA hierarchy is a primary goal to be accomplished. Beneath the root
are nodes that represent the subgoals necessary to achieve the primary goal,
and each subgoal may have a tree of subgoals beneath it. At the leaf nodes of
the hierarchy are the actionable operations necessary to achieve each of the
lowest-level subgoals.

Once the hierarchical task analysis is complete, and its corresponding hier-
archy of subgoals has been created, the method for designing according to
external subgoal support can begin. It proceeds in two phases as shown be-
low. The Salmon interface, shown in the next section, was designed according
to this method:

• Phase 1 - Identify information required.
(1) For each goal, starting with the primary goal and proceeding through all

subgoals in the HTA, identify the information a user will need:
(a) to determine when the goal has been completed;
(b) to set the subgoals beneath the goal.

(2) For each operation at the leaf nodes of the HTA, determine what infor-
mation will be needed to execute the operation. This is usually:
(a) procedural knowledge – information about how to execute the oper-

ation;
(b) declarative knowledge – any parameters that must be supplied to the

operation (e.g., the name of a user being added to an ACL).
• Phase 2 - Provide Phase-1 information in the interface.
(1) Incorporate, in the designed interface, an accurate, clear, and salient repre-
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Fig. 2. The Salmon interface (screenshot) was designed to provide external subgoal
support by having all 13 atomic permissions be settable in the upper pane, and by
showing effective permissions in the lower pane.

sentation of the necessary information, as determined by the above steps. 3

5.3 Salmon interface with ESS

The Salmon interface (see Figure 2) was designed according to the ESS method.
Phase 1 of the ESS method identified the following information as necessary
for establishing the right subgoals and executing the right operations in a
file-permissions interface:

(1) The full list of 13 atomic permissions, with no permission values hidden;
(2) Stated permissions for all users and groups on the ACL;
(3) Group membership data, and how the data combine to form a user’s

effective permissions;
(4) Effective permissions for all users on the ACL.

3 External representation design is a large topic and is not covered in detail here;
see Card (2003) or Woods and Roth (1988) for more on this topic.
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The Salmon main window contains all of this information. The window is split
into two panes, upper and lower. In the upper pane, the 13 atomic permissions
are listed across the top; immediately below them are the checkboxes necessary
for setting the stated permissions for each user or group on the ACL. In the
lower pane is an effective-permissions display. For any individual user selected,
the effective-permissions display shows the groups of which that user is a
member, the permissions inherited from those groups, the user’s individual
stated permissions, and the combination of all these permissions, i.e., the
user’s effective permissions.

6 User study and experimental method

A laboratory user study was conducted to observe and document errors in
file-permissions-setting tasks. Two user interfaces were compared: XPFP and
Salmon, a new interface for setting file permissions, designed in accordance
with the principles of external subgoal support.

6.1 Participants

Twenty-four students and research staff at Carnegie Mellon University volun-
tarily participated in the study. Participants were recruited randomly. All par-
ticipants’ academic backgrounds were in science and engineering disciplines,
and all were daily computer users. While a few usually used UNIX-based
computer systems in their daily work, all had at least some experience using
Windows, with 21 out of 24 claiming they used Windows at least a few times
a week. Nineteen reported having some experience setting file permissions,
on Windows or another operating system, while 5 reported having no expe-
rience setting file permissions whatsoever. All but four reported setting file
permissions a few times a month or less.

6.2 Apparatus

All participants solved a series of permission-setting tasks on a computer
running Windows XP, Version 2002, Service Pack 1, using either the XPFP
or Salmon permission-setting user interface. Timestamped screen video and
mouse and keyboard actions were recorded with a software tool developed for
user study data collection. Participants’ initial and final permissions settings
were recorded for each task instance.
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6.3 Task descriptions

To simulate real permission-setting conditions, a hypothetical scenario was
designed in which the participant worked in a generic “organization,” shared
her computer with other workers in the organization, and had to restrict ac-
cess to the files and folders on her computer. On the laboratory Windows XP
machine, the hypothetical organization’s computer environment was created
and populated with individual users, groups (containing users), files, and fold-
ers. The environment included 27 individual users, named for each letter of
the alphabet (Ari, Bill, Catherine, Dave, Evelyn, etc.), plus one user named
Tux, which represented the participant her/himself. The environment also in-
cluded 6 groups named ProjectA through ProjectF, each of which contained
6 members drawn from the 27 users. No group contained another group as a
member. There were also files and folders on which participants were to set
permissions.

Participants were given three permission-setting tasks, called Jack, Wesley
and Tux, and one training task called the Hakim task. The Hakim (training)
task simply required the participant to add a user to the access control list
(ACL), and to give that user READ permission. This training task gave partic-
ipants experience with the mechanics of adding users and setting permissions
– actions which were common to the experimental tasks.

The Jack and Wesley permission-setting tasks were chosen because they in-
volved group inheritance, a feature of the NTFS permissions model that was
expected to lead to a great deal of user error. These two tasks required partic-
ipants to set permissions on a text file so that users Jack or Wesley could read
the file, but not change it. The Tux task was chosen to determine how easily
participants could find the DELETE permission checkbox if it were hidden, as it
is in the XPFP interface, as opposed to being immediately visible, as it is in
the Salmon interface. The Tux task required participants to set permissions
on a text file so that Tux would not be able to delete the file by accident.

The task statements for the four tasks are shown below:

Hakim (training) task. You (username: tux) have just created the folder
Stuff for Hakim, so that you can share private data with your friend Hakim
(username: hakim). Set permissions on the folder so that Hakim will be
able to read anything you put in the folder. Make sure no one else can read
anything in the folder.

Jack task. The group ProjectE is working on projectEdata.txt, so ev-
eryone in ProjectE can read, write, or delete it. Jack (username: jack) has
just been reassigned to another project and must not be allowed to change
the file’s contents, but should be allowed to read it. Make sure that effec-
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tive now, Jack can read the file projectEdata.txt, but in no way change its
contents.

Wesley task. 4 The group ProjectF is working on projectFdata.txt, so
everyone in ProjectF can read, write, or delete it. Wesley (username: wesley)
has just been reassigned to another project and must not be allowed to
change the file’s contents, but should be allowed to read it. Make sure that
effective now, Wesley can read the file projectFdata.txt, but in no way
change its contents.

Tux task. You (username: tux) have a checkbook-balancing program
that writes to a file called myCheckbook.dat. You don’t want to accidentally
delete this file. Deny yourself the permission to delete it. Of course, you want
all other permissions to remain unchanged.

In the Wesley and Jack tasks, there was one group that was already on the
access control list (ACL) for the file, and the operative individual user was
a member of that group. The difference between the Wesley and Jack tasks
was that in the Wesley task, Wesley was inheriting READ and WRITE permis-
sions from ProjectF, but not ADMINISTRATE permission, while in the Jack task,
Jack was inheriting READ and WRITE as well as ADMINISTRATE permissions from
ProjectE.

The simple solution to the Wesley task was to add Wesley to the ACL and
explicitly deny him WRITE permission; he was already allowed READ permis-
sion from ProjectF. However, this simple solution would not work for Jack,
since Jack was inheriting ADMINISTRATE permission as well as READ and WRITE

permission. If Jack was denied WRITE permission, but not explicitly denied
ADMINISTRATE permission, he would have been able to restore his WRITE per-
mission. The task statement presented to users did not mention this nuance;
it was left to the interfaces to provide the cues needed to understand that
Jack’s ADMINISTRATE permission had to be removed.

6.4 Rules for completing tasks

Participants were asked to abide by certain rules to ensure as realistic an
environment as possible without compromising the experimental comparison
between XPFP and Salmon. First, they were allowed to check group mem-
berships in the XP Computer Management application, which is a separate
application from the file-permissions interfaces. However, in order to prevent
users from completing tasks without using the file-permissions interfaces, they
were asked not to use the Computer Management application to change group

4 The task statement for Wesley was identical to that for Jack except for the names
of specific files, users, and groups. The tasks differed, however, in the way they were
initialized; see text following the task statements.
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memberships. Thus, users were not allowed to complete the Wesley and Jack
tasks by removing Wesley or Jack from their respective groups. Second, to
compensate for the first restriction, participants were told that if a task state-
ment did not explicitly mention a given user, any permission setting was per-
missible for that user. Thus, participants could change the group ProjectE’s
or the group ProjectF’s permissions and not be concerned about the effects on
members of those groups besides Wesley or Jack. Finally, users were allowed
to access a selected set of Windows Help files that pertained specifically to file
permissions, but they could not browse the full set of Help files at random.

6.5 Procedure

Participants were assigned randomly to use either the XPFP or Salmon inter-
face. Each participant used only the single assigned interface for all tasks; no
one used both interfaces. Twelve participants were assigned to each interface.
Participants were asked to “think aloud” throughout the course of the exper-
iment, and were instructed in thinking aloud according to directions adapted
from Ericsson and Simon (1993). Participants were shown how to view system
users, groups, and group memberships using the Computer Management in-
terface and how to access the limited set of Windows Help files. Participants
were given no instruction in using the XPFP or Salmon interfaces. The exper-
imenter brought up the interface the participant was to use. Task statements
were presented in text in a Web browser, and remained available to the partic-
ipant throughout the task. All participants were given the same training task
first, after which the presentation order of the remaining tasks was counterbal-
anced among participants using a full factorial design. Participants were given
8 minutes to complete each task. After each task was completed, participants
were asked to rate their confidence on a 1-7 scale (7: very confident) that the
task had been completed correctly.

7 Analytical procedures

This section presents the procedures for data analysis, the results of which are
presented in Section 8. Data were logged from user sessions automatically by
custom software. Separate, but consistently timestamped, files were kept for
keyboard, mouse, video and verbal protocols (digital video and audio). These
data sets needed to be analyzed to recover task-relevant information regarding
speed (timing), accuracy (task success or failure), and errors (discrete actions,
classification of action as error or non-error, and classification of errors into
one of four types). Measuring elapsed times of events is straightforward, and
will not be discussed in detail. Other analytical aspects of the experiment are
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discussed below.

7.1 Accuracy - determining task success or failure

Accuracy was measured in terms of whether or not the participant succeeded in
correctly executing the task. To determine task success or failure, participants’
final permission settings were examined. For the Wesley and Jack tasks, a
task instance was deemed successful if the individual (Wesley or Jack) had
effective permissions allowing him READ permission and denying him WRITE and
ADMINISTRATE permissions. A Wesley or Jack task instance was deemed a failure
if the individual had effective permissions denying READ permission, or allowing
WRITE and/or ADMINISTRATE permission. EXECUTE and DELETE permissions and
all permissions for other entities were ignored. For the Tux task, a task instance
was deemed successful if Tux had effective permissions denying DELETE and
allowing both READ and WRITE permissions. A Tux task instance was deemed
a failure if Tux had effective permissions allowing DELETE, or denying READ or
WRITE permission.

7.2 Actions

Actions need to be defined so that user data can be divided into discrete units
for error analysis. An action is defined as any change to the ACL, namely
adding an entity to or removing an entity from the ACL, or altering the
permissions of an entity already on the ACL.

7.3 Classifying actions as errors

An action is classified as an error if it is discrepant with a model of correct
actions. A model of correct actions for each task was constructed by hierarchi-
cal task analysis (HTA) (Kirwan, 1994). An example HTA for the Jack task is
shown in Figure 3; HTAs for other tasks were similarly constructed. The HTA
for each task consists of the goals, plans and actions required to complete the
task.

Each discrepancy between user actions and HTA model actions was classified
as an error of commission, an error of omission, or a non-error. A user action
was an error of commission if it was unnecessary according to the HTA. It was
an error of omission if it was a necessary action according to the HTA, but
the user failed to complete it. Non-errors included user actions that matched
actions in the HTA and unnecessary but innocuous actions, such as changing
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Goal:  Jack should be allowed to read but not change the file

Subgoal 1:  Allow jack 
effective READ permission

Subgoal 2: Override or 
eliminate ProjectE's
WRITE permission

Subgoal 3:  Override or 
eliminate ProjectE's

ADMINISTRATE permission

1.1 Add 
jack

2.2 Deny 
jack WRITE

3.2 Deny jack 
ADMINISTRATE

1.2 Allow 
jack READ

2.4 Remove 
ProjectE

2.3 Deny or Unset
ProjectE’s WRITE

permission

3.3 Deny or Unset ProjectE’s 
ADMINISTRATE permission

1.3 Let jack inherit 
READ permission from 

ProjectE

2.1 Add 
jack

3.4 Remove 
ProjectE

3.1 Add 
jack

PLAN: 1.1-1.2 
in order OR 1.3

PLAN: 2.1-2.2 in 
order OR 2.3 OR 2.4

PLAN: Any order

PLAN: 3.1-3.2 in 
order OR 3.3 OR 3.4

Fig. 3. Hierarchical task analysis (HTA) for the Jack task.

permissions in an interface to “see what happens” and then changing them
back.

7.4 Classifying errors by type

Actions that were classified as errors were further classified according to error
type: goal, plan, action, and perception errors. These four types were drawn
from Pocock et al.’s THEA which describes four stages of human information
processing (Pocock et al., 2001). There are many other frameworks that could
have been used to classify human error. THEA was chosen because it was
specifically designed for evaluating user interfaces, and because of its ground-
ing in the familiar work of Norman (1988).

Goal errors, the focus of the present work, are described forthwith. Similar
criteria were used to classify action, plan, and perception errors. An error was
classified as a goal error if it was either: (1) an error of commission that was
due to the user’s establishing a wrong subgoal; or (2) an error of omission that
was due to the user’s failure to establish a necessary subgoal. An example of
a common goal error from the Wesley task was a user failing to explicitly
deny Wesley WRITE permission. In the Jack task, both failing to explicitly
deny Jack WRITE permission (omitting Subgoal 2 in Figure 3) and failing to
explicitly deny Jack ADMINISTRATE permission (omitting Subgoal 3 in Figure 3)
were goal errors. In the Tux task, denying Tux WRITE permission was a goal
error.
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8 Results

This section presents the results of the study, including details of speed, accu-
racy and propensity for mitigating errors for each of the two interfaces under
scrutiny. The results show that Salmon performed better than XPFP did.

8.1 Speed

Figure 4 shows the average task completion times for each of the two inter-
faces and three tasks. The solid bars show times for all participants, whether
they succeeded or failed in the task; the striped bars show times only for
participants who completed the tasks accurately. For Wesley and Jack, these
results are of interest, because they show that the success of Salmon users
was not due to having spent more time on task. In fact, those who completed
the tasks successfully took less time using the Salmon interface. The difference
between times for the two interfaces is not statistically significant (one-sided t-
test for Wesley: t=0.3942, df =14.39, p=0.3496; for Jack: t=0.8973, df =9.367,
p=0.1961). For the Tux task, successful Salmon users spent, on average, sig-
nificantly less time (M=60.8s, sd=23.0) than the successful XPFP users did
(M=178.0s, sd=108.6). A one-sided t-test showed this difference to be statis-
tically significant at the .05 level (t=3.183, df =8.538, p=0.006).

Wesley task Jack task Tux task
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)

50

100
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200

250

0

All XPFP users

All Salmon users

Successful XPFP users only

Successful Salmon users only

Fig. 4. Average time to complete Wesley, Jack and Tux tasks. Successful Salmon
users took less time on average than successful XPFP users did, suggesting that
Salmon’s accuracy gains were not due simply to a speed-accuracy tradeoff.
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8.2 Accuracy

Table 1 shows the percentage of participants who successfully (accurately)
completed the tasks on the XPFP and Salmon interfaces. In testing whether
or not Salmon gives superior performance in terms of accuracy (measured as
task completions), a null hypothesis was posited: the proportion of task com-
pletions under Salmon was less than or equal to the proportion under XPFP;
the alternative hypothesis is that the proportion for Salmon was greater. To
test whether two sample proportions are equal, let p̂S be the proportion of
completions for Salmon and let p̂X be the proportion for XPFP. The test
statistic is ts = p̂S−p̂X

√

p̄(1−p̄)( 1

nS
+ 1

nX
)

where p̄ is the total number of completions

divided by the total number of subjects (e.g., for Jack, there were 15 (3+12)
completions by 24 (12+12) subjects; thus p̄ = 15/24).

Table 1
Percent of accurate task completions for the Wesley, Jack and Tux tasks on the
XPFP and Salmon interfaces. Salmon outperformed XPFP on all tasks.

XPFP Salmon

Wesley 58% 83%

Jack 25% 100%

Tux 75% 100%

A one-sided z-test was done for the equality of proportions. Since the null
hypothesis specifies equality, one uses the pooled estimate of the standard
error of the difference between the two proportions to calculate the likely size
of the chance error in estimating the true difference between the proportions.
The test statistic, ts, for the results of the Jack task was 3.795, which on
referral to a z-table has significance probability less than .0001. Thus the null
hypothesis can be strongly rejected; for the Jack task the Salmon interface
is superior. Salmon is also superior for the Tux task, with a test statistic of
1.852 and significance probability .032; the Wesley task test statistic of 1.347
is weakly significant, with a significance probability of .089.

Recall that participants were asked to state their confidence in their work.
Curiously, there was no significant difference between interfaces in partici-
pants’ confidence ratings, on any task, as to whether tasks were completed
correctly or not. XPFP users gave slightly higher confidence ratings than
Salmon users for the Wesley (XPFP: M=5.58, sd=1.56; Salmon: M=4.83,
sd=1.53) and Jack (XPFP: M=5.58, sd=1.39; Salmon: M=5.17, sd=1.64)
tasks, and gave slightly lower confidence ratings for the Tux task (XPFP:
M=5.50, sd=1.45; Salmon: M=6.17, sd=1.11). One-sided, unpaired t-tests
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show Wesley (t=1.19, df =21.99, p=0.88); Jack (t=0.67, df =21.36, p=0.75);
and Tux (t=-1.26, df =20.66, p=0.11) with no significant differences between
XPFP and Salmon with respect to user confidence. This is interesting in view
of the very different actual outcomes; that is, Salmon facilitated much bet-
ter success than XPFP did, and yet the perception of participants regarding
their success was about the same. This bears investigation, but is not further
addressed here.

8.3 Errors

Table 2 shows results of the error analysis for the three tasks; XPFP dominated
in terms of total errors and goal errors. For the Wesley task, 5 of 9 XPFP-user
errors were goal errors; 1 of 4 Salmon-user errors was a goal error. For the Jack
task, 15 of 16 XPFP-user errors were goal errors; 1 of 6 Salmon-user errors
was a goal error. For the Tux task, 2 of 3 XPFP user errors were goal errors;
Salmon users made no errors.

Table 2
Counts of errors by type for the Wesley, Jack and Tux tasks on XPFP and Salmon
interfaces. Significantly fewer goal errors were made with Salmon than with XPFP
on the same tasks.

Goal Plan Action Perception

Wesley

XPFP 5 1 0 3

Salmon 1 2 1 0

Jack

XPFP 15 0 0 1

Salmon 1 3 2 0

Tux

XPFP 2 1 0 0

Salmon 0 0 0 0

In testing whether or not Salmon gives superior performance in terms of reduc-
ing the likelihood of goal errors, a null hypothesis was posited: the proportion
of goal errors under Salmon was greater than or equal to the proportion un-
der XPFP; the alternative hypothesis is that the proportion for Salmon was
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smaller. As described in Section 8.2, a one-sided z-test was done for the equal-
ity of proportions. Since the null hypothesis specifies equality, one uses the
pooled estimate of the standard error of the difference between the two pro-
portions to calculate the likely size of the chance error in estimating the true
difference between the proportions. The test statistic, ts , for the results of
the Wesley task was -1.885, which on referral to a z-table has a significance
probability of .0297. Thus one can reject the null hypothesis at the .05 level;
the Salmon interface is superior for Wesley. For the Jack task, ts =-3.312, and
the z-table significance probability is .0005, which is highly significant. For the
Tux task, ts =-1.477, and the z-table significance probability is .0698, which is
mildly significant. It can be concluded that in terms of mitigating goal errors,
the Salmon interface performs better than the XPFP interface does.

9 Discussion

A straightforward comparison of accuracy results shows that Salmon outper-
formed XPFP in all three tasks. The causes for XPFP’s poor performance and
Salmon’s improved performance can be inferred from the error classification
data, which shows a substantial reduction in goal errors amongst Salmon users.
For some insight into whether Salmon’s improved external representation was
responsible for the improved performance, users’ protocols were analyzed to
determine the amount of time spent on each of ten high-level behaviors. The
analysis implies that Salmon’s external representation of task-relevant data
leads users more readily toward finding the information they need.

9.1 Goal errors in XPFP

Goal errors were common amongst XPFP users and led to high failure rates.
The preponderance of goal errors observed in XPFP is not surprising; as noted
in Section 4, the XPFP interface lacks information vital to the file-permissions
problem solver (see Figure 1). In the main XPFP window, there is no display
of effective permissions, no way to access group membership information, and
no indication of the existence of ADMINISTRATE permissions. Without effective
permissions, progress toward the primary goal cannot be checked accurately.
Many users, unaware of the distinction between stated and effective permis-
sions, used the stated permissions to determine whether the primary goal
had been completed. For example, during the Wesley task, many users saw
the XPFP window in the state shown in Figure 1. From this display, it ap-
peared to many users that Wesley was allowed READ permission because his
ALLOW-READ checkbox is checked, but not allowed WRITE permission, because
his ALLOW-WRITE checkbox is not checked. They did not realize that he has ef-
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fective WRITE permission from ProjectF. Users hence were misled into thinking
they had completed the task, even though they had not.

9.2 Fewer goal errors in Salmon

The improvement in task-completion successes and the dramatic reduction in
goal errors achieved in the Salmon study can be accounted for primarily by the
use of external subgoal support in the design of the Salmon interface. Users of
Salmon were able to track their progress and identify the subgoals necessary
to complete tasks using the effective permissions display, which provided an
external representation supporting subgoaling. Although Salmon’s design con-
tains numerous superficial changes from the XPFP design (such as different
fonts, labels, icons, colors, and layout), observation of participants’ protocols
strongly suggests that it was the effective permissions display that led users
to formulate the correct goals. For example, one Salmon participant, about
to commit an incorrect solution to the Jack task, said, “I see Jack over here
now [pointing to Jack’s stated permissions], and he doesn’t have any access
rights... Oh, wait! Jack has access rights over here [pointing to Salmon’s ef-
fective permissions display].” After noticing the effective permissions display,
the participant was able to correctly complete the task. In contrast, one typ-
ical XPFP participant, looking at Wesley’s stated permissions in the XPFP
window as shown in Figure 1, said, “And apparently his permissions are just
READ. That’s what we want.” He had not explicitly denied WRITE permission
to Wesley, and implemented an incorrect solution. In the absence of correct
information to confirm that the task was complete, the participant used incor-
rect information, the stated permissions, to “confirm” that he had correctly
completed the task. As opposed to the XPFP interface, Salmon’s external
representation enables the user to avoid having to build and maintain an in-
ternal mental representation of a complex permission-setting structure. The
Salmon display provided the necessary goal cues by holding the representation
externally, making it more accessible to the user.

9.3 Less time searching for information in Salmon

To determine in more detail how users spent their time, and to address the
hypothesis that Salmon users’ improvement was due to improved external
representations, users’ protocols were analyzed for time spent on specific be-
haviors. This kind of analysis reveals how an interface shapes users’ behavior,
by drawing attention to activities where users spent the bulk of their time.
Ten behaviors were identified, and each user protocol was segmented into por-
tions of time spent on each of the ten behaviors. Objective criteria determined
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Fig. 5. Average time spent on each of ten behaviors identified in the Wesley task by
all XPFP and Salmon users combined, whether successful or not, and only successful
XPFP and Salmon users. Salmon users spent less time on information-gathering
behaviors like check-groups, learn-interface, and consult-help.

whether a given segment of protocol matched a particular behavior. For ex-
ample, a “Read task” behavior was identified any time a user had the Web
browser with the task statement in the foreground. As another example, a
“Learn interface” behavior was identified as the time between first reading
the task statement and starting to enact a plan, or any action that followed
a user statement like “Let’s see what this does.” Figure 5 shows the average
amount of time users spent on each of these ten behaviors for the Wesley task;
results for the Jack task are similar, and are not shown. Figure 6 shows the
average amount of time that users spent on each of these ten behaviors for the
Tux task. Each set of four bars shows, from left to right, the average times for
all XPFP users, all Salmon users, successful XPFP users only, and successful
Salmon users only. Descriptions and discussion of each of the ten behaviors is
included below.

• Read task. This behavior consists of reading the task statement in the
Web browser. Since the task statements were presented in the same manner
to all users, it is to be expected that users of both interfaces would take
about the same amount of time, on average, to read them and refer to them
while working.
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Fig. 6. Average time spent on each of ten behaviors identified in the Tux task by all
XPFP and Salmon users, whether successful or not, and all successful XPFP and
Salmon users. Salmon users spent less time on information-gathering behaviors like
plan-task, learn-interface, and consult-help.

• Plan. This behavior is assumed to occur when the user is not engaged in
any of the other nine behaviors on this list; it consists of thinking and trying
to formulate a plan. Notice that, for the Wesley task, successful XPFP users
and Salmon users spent more time planning than did all XPFP users. This
can be explained by noting that those XPFP users who failed to complete
the Wesley task typically failed by omitting a subgoal, and hence finished
more quickly than those who successfully completed all subgoals. Notice,
too, that XPFP users in the Tux task spent more than twice as much time
planning, since without a visible DELETE permission-setting checkbox, it was
harder to decide what to do.

• Manage windows. The manage-windows behavior includes the activities
of moving, opening, closing, minimizing, or otherwise manipulating interface
windows. Time spent on the dialog windows for Check groups, Read task,
Consult Help, and Add to ACL behaviors is not included within manage-
windows. Salmon users did not exhibit managing-windows behavior, since
Salmon only has one interface window, while XPFP has as many as four.
Consequently, it takes XPFP users longer to navigate through the multiple
windows to find information. Salmon does take up more space on the screen,
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however, in order to display all the relevant information in one window.
• Check work. This behavior consists of reviewing the interface to confirm

that permissions look correct; it occurs after setting permissions and before
ending the task or revising work. It is interesting to note that although users
spent roughly the same amount of time checking work on both interfaces
for all three tasks, there were still more failures amongst those using XPFP.
This is likely because the information needed to check work, the effective
permissions, is not visible in XPFP, so users employ the wrong information,
the stated permissions, to check their work.

• Check groups. This behavior consists of checking group membership with
the XP Computer Management interface. XPFP does not display group
membership information, so it requires users to view the separate Computer
Management application to check group membership. Salmon’s lower pane
displays group information, so it is not necessary to go to another application
to check group membership. (Some users did anyway, because they had not
yet noticed that the information was available in Salmon). Unsurprisingly,
Salmon users spent less time checking group memberships than did XPFP
users in the Wesley task. Since groups were not relevant to the Tux task,
no users spent time checking groups.

• Learn interface. This behavior consists of either looking over the interface
at the beginning of the task to see what can be done with it, or experiment-
ing with the interface by clicking on interface elements whose function is
unknown or confusing. Novice users spend time surveying a new interface
and testing out its functionality to see how it works. Often, when at an
impasse, users may test an unfamiliar interface function to see if it helps
them accomplish their goal. Since Salmon was a completely new interface,
while some users had already used the XPFP interface before participating
in the study, it was expected that users would spend more time learning the
Salmon interface. This does not appear to have been the case; apparently
confusion led many XPFP users to experiment more with that interface.
This phenomenon was especially apparent in the Tux task, where XPFP
users spent, on average, six times longer than Salmon users exploring and
experimenting with the interface.

• Consult Help. This behavior consists of browsing or reading the Help files.
Users consult Help when confused about what to do next or about how an
interface works. XPFP users spent far more time consulting Help than did
Salmon users, presumably because they were having more difficulty using
the XPFP interface.

• Set permissions. This behavior consists of reading permissions labels and
clicking on their corresponding checkboxes. In the Wesley task, after users
had added Wesley to the ACL, they would scan through the list of permis-
sions labels in the interface. Salmon lists all 13 atomic permissions labels,
while XPFP lists only 6 composite permissions on its main window. Since
there are fewer labels to scan in XPFP, those users set permissions faster,
on average. However, the added efficiency in XPFP comes at a price; all of
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the users who failed at the Jack task failed in part because they did not
notice that Jack had ADMINISTRATE permission. They failed because the AD-

MINISTRATE permission is hidden two screens away. Furthermore, in the Tux
task, XPFP users spent far more time searching for the DELETE permission,
since it is hidden in XPFP, but readily visible in Salmon.

• Add to ACL. This behavior consists of selecting a user or group, and
adding it to the ACL. Salmon uses essentially the same dialog as XPFP
does for adding users to the ACL, so little difference in the behavior times
between the two interfaces is expected here.

• Remove from ACL. This behavior consists of selecting a user or group,
and removing it from the ACL. The Remove operation was essentially the
same in both interfaces, and was rarely used.

As this detailed behavior analysis shows, Salmon users spent less time than
XPFP users on the behaviors related to information gathering (Check groups,
Learn interface, and Consult Help) and spent a greater proportion of their
time on essential task behaviors (Add to ACL, Set permissions, and Check
work). This observation supports the hypothesis that an improved external
representation of task-relevant information – due to the use of ESS in the
design of Salmon – leads users to spend less time looking for information and
leads users to find more readily the information they need to complete tasks.

10 Conclusion

In the course of completing tasks with a user interface, users look for informa-
tion to formulate goals and to check progress. When the necessary information
is misleading or absent, users fail to establish the correct goals and hence make
goal errors. Goal errors may lead to total task failure, and thus impinge on
interface dependability. Many goal errors can be prevented by providing an
accurate, clear and salient external representation of the information needed
to achieve the user’s primary goal. A design method for producing such a
representation has been named external subgoal support.

The Windows XP file permissions interface, which does not use external sub-
goal support, was shown to have unacceptably low success rates – 58%, 25%
and 75% – on three representative file permission-setting tasks. Salmon, an al-
ternative interface designed in accordance with the external subgoal support
principle, was shown to increase percentage of successes to 83%, 100% and
100% on the same tasks. Furthermore, user tests with Salmon showed a dra-
matic reduction in the occurrence of goal errors compared to XPFP, with 80%
fewer goal errors on one task, 94% fewer goal errors on another, and 100% on
a third. In addition, Salmon maintained or substantially reduced time to task
completion for all three tasks. These improvements in successful task comple-
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tion, reductions in goal error occurrence, and time to task completion were due
primarily to external subgoal support. These speed and success rates far more
closely approach what is needed for dependable user interfaces in mission-
critical systems like those required for setting security-related configurations
of servers, firewalls, personal workstations, etc.

11 Future

External subgoal support has been demonstrated in a first step to be a success-
ful design technique for reducing goal errors in the domain of file-permission
setting, but the technique will need to be tested in other task domains before
it is fully proven. Testing in additional task domains will also help to define
its limits, and potentially reveal areas in which it cannot by itself reduce goal
errors. The present work attempted to reduce only one type of user interface
error – goal errors. Future work will look at means to reduce plan, action, and
perception errors as well. In addition, interface retention could be explored by
asking both Salmon and XPFP participants to return after two months for
retesting, with the expectation that one interface or the other would be better
retained and would therefore offer sustained (if not improved) performance
over the earlier session. Such an exploration may yield hints about the form
of interface best suited to occasional use, as would be the case for nearly any
permission-setting application.
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