
User Interface Dependability through Goal-Error Prevention

Robert W. Reeder and Roy A. Maxion
reeder@cs.cmu.edu and maxion@cs.cmu.edu

Dependable Systems Laboratory

Computer Science Department

Carnegie Mellon University

Pittsburgh, Pennsylvania 15213 / USA

Abstract

User interfaces form a critical coupling between humans
and computers. When the interface fails, the user fails, and
the mission is lost. For example, in computer security appli-
cations, human-made configuration errors can expose en-
tire systems to various forms of attack.

To avoid interaction failures, a dependable user inter-
face must facilitate the speedy and accurate completion of
user tasks. Defects in the interface cause user errors (e.g.,
goal, plan, action and perception errors), which impinge on
speed and accuracy goals, and can lead to mission failure.

One source of user error is poor information represen-
tation in the interface. This can cause users to commit a
specific class of errors – goal errors. A design principle
(anchor-based subgoaling) for mitigating this cause was
formulated. The principle was evaluated in the domain of
setting Windows file permissions. The native Windows XP
file permissions interface, which did not support anchor-
based subgoaling, was compared to an alternative, called
Salmon, which did. In an experiment with 24 users, Salmon
achieved as much as a four-fold increase in accuracy for a
representative task and a 94% reduction in the number of
goal errors committed, compared to the XP interface.

1 Introduction
One locus of vulnerability in a computer system is the

user interface. Undependable interfaces are those that do
not meet their specifications in terms of the speed and ac-
curacy with which users should complete tasks. One rea-
son why some user interfaces fail to meet their speed and
accuracy specifications is human error. Researchers have
long recognized that human error has causes and manifes-
tations similar across all domains of human endeavor, from
aviation, to power plant operation, to making a cup of tea
[13, 15, 17, 21]. In the domain of software user interfaces,

human error leads people off the path of correctly complet-
ing a task and on to lengthy delays or partial or total task
failure. Thus, it is imperative for interface designers to un-
derstand the common types and causes of human error and
the ways in which they may be prevented. When interfaces
are designed to eliminate the conditions that lead humans to
make mistakes, interfaces will be more dependable.

One domain in which user interface accuracy is critically
important is computer security. Inaccurate security settings
can have a high cost – they can make sensitive data vul-
nerable, or they can leave an entire system open to attack.
Adding to this cost, security problems have what Whitten
and Tygar [20] have called the “barn door property” – once
a system has had a vulnerability for any length of time, there
may be no way to know if the vulnerability has been ex-
ploited, so the system will have to be considered compro-
mised, whether it has been or not.

The present work investigates user interface dependabil-
ity and human error in the security context of setting file
permissions under Microsoft’s Windows XP operating sys-
tem, which uses Microsoft’s NT file system (NTFS). A sig-
nificant amount of anecdotal evidence suggests that setting
NTFS file permissions is a particularly error-prone task.
For example, there is the so-called “Memogate” scandal,
in which staffers from one party on the United States Sen-
ate Judiciary Committee stole confidential memos from the
opposing party [19]. The memos were stored on a shared
NTFS server. The theft was possible in part because an in-
experienced system administrator had failed to set permis-
sions correctly on the shared server. As another example,
a Windows network administrator at Carnegie Mellon Uni-
versity reports that many users want to share their files so
they can access them both at work and at home; they ac-
cidentally make their private files accessible to all (several
hundred) users on the network, because it is too confusing to
set permissions as actually desired [18]. Finally, Microsoft
publishes a list of “best practices” for NTFS security that

Proceedings of the 2005 International Conference on Dependable Systems and Networks (DSN’05)

0-7695-2282-3/05 $20.00 © 2005 IEEE

advises users not to use several of the features of the NTFS
permissions model, such as negative (i.e., DENY) permis-
sions [10]. Use of these features “... could cause unexpected
access problems or reduce security.” Providing access to
features which are apparently problematic is bound to lead
to errors.

As these anecdotes indicate, setting and checking per-
missions cannot always be left to expert system adminis-
trators – users in many environments need or want to take
responsibility for protecting their own data. Nevertheless,
setting file permissions is not an everyday task; it may need
to be done only every few weeks or months. Thus, those
setting file permissions will often not be expert system ad-
ministrators – they will be novice or occasional users, who,
from time to time, want to restrict access to files or grant ac-
cess to a limited number of associates. They will not readily
remember arcane details about how to operate a permission-
setting interface. The present work adopts the position that
permission-setting interfaces should accommodate novice
and occasional users.

This paper reports an investigation into, and a solution
for, one type of human error encountered in permission-
setting interfaces. An existing interface for setting NTFS
permissions, the Windows XP File Permissions interface
(hereafter abbreviated XPFP), was shown to have accuracy
rates as low as 25% on permission-setting tasks. Errors
made by users of the XPFP interface were identified and
categorized into types according to an established human-
error framework. Goal errors, the failures of users to under-
stand what to do, were identified as the dominant type of
error. A primary cause of goal errors, namely a poor exter-
nal representation of the information needed to complete the
user’s root goal – a representation that is sometimes called
an anchor (for concepts held in human memory) – was iden-
tified. A design principle, anchor-based subgoaling, was
proposed to reduce goal errors, and was implemented in a
new interface, called Salmon, for setting NTFS file permis-
sions. The design principle was evaluated in a laboratory
user study comparing Salmon to XPFP. Salmon achieved
a success rate of 100% on the task on which XPFP had
achieved a 25% accuracy rate, and showed a 94% reduc-
tion in the number of goal errors users made on the same
task.

2 Problem and approach
The objective of the present work is to understand the

causes of user error in user interfaces generally, and in
XPFP in particular, and to determine what can be done to
mitigate or eliminate them. It is a further objective to find
a design principle that can be applied to new generations of
user interfaces so that the same user errors are not encoun-
tered again and again in future user interfaces.

A visual inspection and informal use of the XPFP in-
terface revealed several instances of an interface problem.

Specifically, information that was necessary to complete
tasks accurately was hidden or was entirely missing from
the interface. Cognitive theory suggests that without ready
access to necessary information, users are likely to commit
goal errors (see Section 5.1). A solution was proposed to
reduce the occurrence of goal errors. This solution, called
anchor-based subgoaling, led to the following hypothesis:

Use of anchor-based subgoaling in user interface
design reduces the likelihood that users will com-
mit goal errors, and task accuracy rates should im-
prove when goal errors are reduced.

This hypothesis was tested by implementing an interface,
Salmon, designed in accordance with the anchor-based sub-
goaling procedure, and by conducting a laboratory user
study comparing the XPFP interface to Salmon. Task suc-
cess rates and goal-error occurrences were compared be-
tween XPFP and Salmon to determine whether anchor-
based subgoaling as implemented in Salmon was an effec-
tive means of improving successful task completion and re-
ducing goal errors.

3 Related work
File permissions are an instance of the broader area of

access control in which several authors have published re-
lated work. Those who have evaluated interfaces for setting
file access include Good and Krekelberg [7], Long et al. [9]
and Zurko et al. [24]. Zurko et al. conducted a user study
on the Visual Policy Builder, a graphical user interface for
specifying access control policies for their Adage system.
Good and Krekelberg showed that the Kazaa peer-to-peer
file-sharing service’s interface misled many users into unin-
tentionally sharing confidential files. Long et al. evaluated a
preliminary, paper-based interface for limiting applications’
access to system resources. While these three interface eval-
uations were interesting in their specific task domains, none
appear to lead to any conclusion about design principles for
security interfaces in a larger context.

Other work in usable access control in various domains
includes Balfanz [2], Sampemane et al. [16], and Dewan
and Shen [5]. With the exception of the Adage project and
Long et al., work in this area involves outlining access con-
trol models, not evaluating access control interfaces, as the
present work sets out to do.

In the broader human-computer interaction and security
literature (an emerging field known as HCISEC), those who
have proposed principles for better security interface de-
sign include Whitten and Tygar [20], Adams and Sasse [1],
Besnard and Arief [3], Zurko and Simon [25], and Yee [23].
These authors propose ideas for making security tasks eas-
ier to perform accurately, but the ideas are not evaluated
empirically, and neither do they appear to be grounded in
any theory of cognition.

Proceedings of the 2005 International Conference on Dependable Systems and Networks (DSN’05)

0-7695-2282-3/05 $20.00 © 2005 IEEE

The most closely related concept in the traditional
human-computer interaction literature to anchor-based sub-
goaling is the concept of feedback. Norman defines feed-
back as “sending back to the user information about what
action has actually been done, what result has been accom-
plished [13].” Norman and Nielsen both include feedback
as an important user interface design principle [12, 13],
but neither explain how to ensure that adequate feedback
is provided. Anchor-based subgoaling includes an action-
able procedure (see Section 5.2) for ensuring that not only
feedback, but also other forms of needed information are
provided in the interface.

4 Problem in context
The problem of poor external representation can be

observed in the Windows XP file permissions interface
(XPFP). Users maintain mental models (internal represen-
tations) of tasks that may be incorrect or incomplete. In the
course of performing a task, they will update their model
with the information they perceive externally. Thus, for an
interface to be robust to inaccurate mental models, it must
provide the information users need to properly update their
mental models, and it must provide this information in a
way that users will perceive it. XPFP hides or does not show
much of the information necessary to foster understanding
of task requirements and state, while Salmon, an alternate
file permissions interface, prominently displays this infor-
mation and hence requires that only a minimal internal rep-
resentation be maintained. In order to understand what in-
formation is lacking in the XPFP interface and present in
Salmon, some background on the NTFS permissions model
is necessary, and is introduced forthwith.

A computer system using NTFS will be populated with
entities and objects. The entities are individual users and
groups of users on the system. The objects are the files
and folders on the system. NTFS defines 13 atomic permis-
sions1 that correspond to actions that users can perform on
files and folders.

The precise meanings of the 13 NTFS atomic permis-
sions are not relevant to this paper, but are described in [11].
For purposes of this paper, it is sufficient to note that NTFS
permissions can be grouped into five disjoint sets: READ,
WRITE, EXECUTE, DELETE, and ADMINISTRATE 2. Of
these, only READ, WRITE, and ADMINISTRATE will fig-
ure into the tasks for the present study. ADMINISTRATE

permission deserves one special note – an entity that is al-
lowed ADMINISTRATE permission can change its own per-

1Note that NTFS documentation uses the term special permission
where atomic permission is used here. The latter term makes it clearer
that these are the lowest-level, indivisible permissions in the system.

2Note that the XPFP interface and NTFS documentation use a different,
non-disjoint grouping of the 13 atomic permissions into six composite sets.
The disjoint grouping discussed here is the authors’ own, and is used for
clarity of presentation to those readers not already familiar with the NTFS
permissions model.

missions, so even if it were denied READ or WRITE per-
mission on an object, it would still be able to read or write
the object by allowing itself that permission first.

NTFS uses an Access Control List (ACL) model of file
permissions. Under the ACL model, each file and folder
in the file system has an associated list of users and groups
who have permissions on that file or folder. An entry in
this list is called an access control entry. The access control
entry for each user or group on the list has a setting for
each of the atomic permissions. This setting’s value may
be ALLOW, DENY, or NOTSET. The meaning of ALLOW

and DENY are self-evident. NOTSET implicitly means that
neither ALLOW nor DENY has been checked, or turned on;
it acts as a DENY by default, but can be overridden by a
competing ALLOW setting, as described below.

Under the rule of group inheritance, if a group entity has
permissions on an object, all members of the group inherit
the group’s permissions for the object. Conflicts between a
user’s explicit permissions and their inherited permissions
are resolved through precedence rules. Specifically, DENY

settings take precedence over ALLOW settings, but ALLOW

settings take precedence over NOTSET settings. So if a user
has an ALLOW READ setting for a file, but inherits a DENY

READ setting for that file, the user will be denied access to
read the file. Group inheritance and precedence rules lead to
the distinction between stated permissions, the permissions
contained in a user’s access control entry, and effective per-
missions, the actual access a user will be allowed.

The distinction between stated permissions and effec-
tive permissions can make setting file permissions a diffi-
cult task, because the low-level permission values on which
a user operates do not necessarily translate directly into
what access will be allowed to system data. Actual access
in NTFS is determined by a subtle formula accompanying
the precedence rules. However, users setting file permis-
sions are ultimately concerned with who can access what,
not with low-level values and nuanced formulas. Thus the
necessary information for users to evaluate goal status is
the effective permissions, which are the output of the nu-
anced formula, and which reflect the actual access that will
be granted to files.

Casual observation of the XPFP interface (see Figure
1) reveals that XPFP provides a poor external representa-
tion of the file-permissions task. For example, the XPFP
main window contains the checkboxes necessary for setting
the permission values that will be used to determine effec-
tive permissions, but effective permissions themselves are
nowhere to be seen. In fact, XPFP can display effective
permissions, but they are two screens away. To see them,
users must click the Advanced button, then select an “Effec-
tive Permissions” tab. Even then, users must go through an
extra step to choose whose effective permissions they want
to see; viewing multiple entities’ effective permissions si-

Proceedings of the 2005 International Conference on Dependable Systems and Networks (DSN’05)

0-7695-2282-3/05 $20.00 © 2005 IEEE

multaneously is impossible. When users return to changing
permission values, the effective-permissions display disap-
pears. Users need to know the effective permissions to
check their work. Without an effective-permissions display
readily available, or even a cue to indicate their importance,
users are forced not only to maintain in their minds the in-
heritance and precedence rules, but also to compute the ef-
fective permissions mentally.

Figure 1: The XPFP interface. The interface contains in-
formation and functionality for setting permission values,
but effective permissions, group-inherited permissions, and
ADMINISTRATE permissions are not visible.

Besides the lack of an accessible effective-permissions
display, XPFP also hides the ADMINISTRATE permission
setting two screens away from the main window, behind the
Advanced button, and does not display information about
users’ group membership or their group-inherited permis-
sions anywhere. This makes it difficult to track down the
source of an effective permission that was inherited from
a group. Furthermore, users must maintain group mem-
bership and permission settings information in their heads
while completing tasks – a situation that begs for error.

5 Anchor-based subgoaling
Anchor-based subgoaling (ABS) is a principle for ensur-

ing that a user interface provides all the information a user
will need to complete the tasks for which the interface is
intended, and provides such information in a clear and ac-
curate display that the user will notice. The XPFP interface
illustrates the problem of omitting or obscuring necessary
task information, the problem addressed by ABS.

5.1 Cognitive theory
Anchor-based subgoaling is rooted in the cognitive the-

ory of Pocock et al.’s Technique for Human Error Assess-
ment (THEA) [14], which is in turn based on Norman’s
well-known seven-stage execution-evaluation model of hu-
man information processing [13]. THEA condenses Nor-
man’s seven stages down to four stages of information pro-
cessing during which human error can occur. These four
stages are the combination of perception, interpretation, and
evaluation; goal formulation; plan formulation; and action
execution. According to the Norman/THEA models, human
information processing starts with a problem – the root goal
– and proceeds in the following loop:

1. Perceive and interpret information from the environ-
ment, and evaluate whether the problem is solved;

2. If the problem remains unsolved: formulate a subgoal,
according to perceived information, for solving all or
part of the problem. If problem is solved: exit loop;

3. Formulate a plan to achieve the subgoal;
4. Execute the actions in the plan.

Goal errors occur when the second step goes wrong. If
the perceived information consulted in the second step is in-
correct or misinterpreted, the wrong subgoal may be set. If
the wrong information is used to check whether the prob-
lem has been solved in the second step, either an unnec-
essary subgoal may be added (if the problem is assumed
unsolved when it is already solved) or a necessary subgoal
may be omitted (if the problem is assumed solved when it is
not). Thus the availability of information to check progress
toward the root goal is critical during correct subgoal se-
lection. If the salient information suggests an inappropriate
subgoal selection, then goal errors are likely to result.

The potential for goal errors can be seen in the XPFP in-
terface. Since effective permissions are hidden, most users
will not find them, and will determine problem completion
based on either wrong, but visible, information in the in-
terface, or on their own error-prone mental computations.
Hidden group information may result in users not knowing
when a group permission is being inherited. Since the AD-
MINISTRATE permission is hidden, users may never realize
it exists. Lacking this information, users are prone to mak-
ing goal errors.

5.2 Anchor-based subgoaling design procedure
Anchor-based subgoaling bridges the gap between task

analysis and the creation of an external representation dur-
ing the interface design process. The ABS procedure en-
sures that the necessary information is represented. A care-
ful task analysis is a prerequisite for implementing ABS;
Kirwan [8] is an excellent reference on how to perform task
analyses. Kirwan describes the hierarchical task analysis
(HTA) method, which includes a convenient representation

Proceedings of the 2005 International Conference on Dependable Systems and Networks (DSN’05)

0-7695-2282-3/05 $20.00 © 2005 IEEE

for the results of a formal task analysis. An HTA represents
a task as a hierarchy of goals and the operations that are
needed to achieve them. At the root of an HTA hierarchy
is a primary goal to be accomplished. Beneath the root are
nodes that represent the subgoals necessary to achieve the
primary goal; each subgoal may have a tree of subgoals be-
neath it. At the leaves of the hierarchy are the actionable op-
erations necessary to achieve each of the lowest-level sub-
goals. A detailed example appears in Section 7.1.

After the task analysis is completed, the ABS design pro-
cedure can begin. It proceeds as follows:

• Phase 1: Identify the information that is required.
1. For each goal, starting with the primary goal

and proceeding through all subgoals in the HTA,
identify the information a user will need to:

(a) determine when the goal has been com-
pleted;

(b) set the subgoals beneath the goal.
2. For each operation at the leaves of the HTA, de-

termine what information will be needed to exe-
cute the operation. This is usually:

(a) procedural knowledge – information about
how to execute the operation;

(b) declarative knowledge – any parameters that
will have to be supplied to the operation.

• Phase 2: Provide the information in the interface. In-
corporate into the interface design an accurate, clear,
and salient representation of the necessary informa-
tion, as determined by the above steps.3

5.3 Salmon interface
The Salmon interface (see Figure 2) was designed in ac-

cordance with anchor-based subgoaling. Anchor-based sub-
goaling identified the following information as necessary
for establishing the correct subgoals and executing the cor-
rect operations in a file-permissions interface:

1. The full list of 13 atomic permissions;
2. Stated permissions for all users & groups on the ACL;
3. Group membership data, and how it combines to a

user’s effective permissions;
4. Effective permissions for all users on the ACL.

The Salmon interface was designed to provide this in-
formation. Its main window comprises two panes. In the
upper pane are the checkboxes necessary for setting permis-
sion values. Each column of checkboxes has a label corre-
sponding to one of the 13 atomic permissions. These check-
boxes show the stated permissions. In the lower pane is

3External representation design is a large topic and is not covered in de-
tail here; see Card et al. [4] or Woods and Roth [22] for more information
on this subject.

Figure 2: The Salmon interface. The upper pane of the
Salmon interface contains the same information and func-
tionality that is contained in the XPFP main window. The
lower pane contains an effective-permissions display.

an effective-permissions display that shows both the effec-
tive permissions and the group and individual permissions
that combine to the effective permissions. The effective-
permissions display is available at all times. When changes
are made in the upper pane, they are reflected in the lower
pane, and attention is drawn to the lower pane by highlight-
ing the areas that have changed. While effective permis-
sions for all users cannot be viewed on screen at the same
time, Salmon’s lower pane can be scrolled to access infor-
mation that does not fit on the screen. The necessary infor-
mation is readily available in the Salmon interface, and can
be viewed as it is needed.

6 Methodology
A laboratory user study was conducted to observe and

document errors in permission-setting tasks. Two interfaces
were compared: XPFP, which lacks salient representations
of task-relevant information, and Salmon, which was de-
signed using the anchor-based subgoaling design procedure.

6.1 Participants
Twenty-four students and research staff at Carnegie Mel-

lon University voluntarily participated in the study. All par-
ticipants’ academic backgrounds were in science and en-
gineering disciplines, and all were daily computer users.
While a few usually used UNIX-based computer systems
in their daily work, all had at least some experience using
Windows, with 21 out of 24 claiming they used Windows
at least a few times a week. Nineteen reported having some
experience setting file permissions on Windows or another

Proceedings of the 2005 International Conference on Dependable Systems and Networks (DSN’05)

0-7695-2282-3/05 $20.00 © 2005 IEEE

operating system, while 5 reported having no experience
whatsoever in setting file permissions. All but 4 reported
setting file permissions a few times a month or less. Thus,
the participant pool was consistent with the assumption of
occasional users, who are likely to have to relearn the task,
at least partially, due to infrequent use of the interface.

6.2 Apparatus
All participants worked on the same computer, a system

running Windows XP, Version 2002, Service Pack 1. Using
a standard think-aloud experimental paradigm [6], partici-
pants were asked to think aloud as they worked, while their
voice was recorded. Screen video and mouse and keyboard
actions were recorded with a software tool developed for
user study data collection. Participants’ final permissions
settings were saved after each task instance.

6.3 Task design
To simulate real permission-setting conditions, a hy-

pothetical scenario was designed in which the participant
worked in a generic “organization,” shared a computer with
other workers in the organization, and had to restrict access
to the files and folders on her computer. The hypothetical
organization’s computer environment – populated with in-
dividual users, groups containing users, files, and folders –
was created on the laboratory Windows XP machine. The
environment included 27 individual users, named for each
letter of the alphabet (ari, bill, catherine, dave, evelyn, etc.)
plus one user named ’tux’, which was to represent the par-
ticipant. The environment also included 6 groups named
ProjectA through ProjectF, each of which contained 6 mem-
bers drawn from the 27 users. No group contained another
group as a member. There were also files and folders on
which participants were to set permissions.

Participants were randomly assigned to one of the two
interfaces, Salmon or XPFP, and were each given seven
tasks to perform with the same interface. The first of the
tasks was a simple training task to give participants a quick
introduction to the interface they were using. All partic-
ipants performed this task first, and it was excluded from
analysis. The remaining 6 tasks consisted of a variety of
existing-permissions contexts, only two of which, called the
Wesley and Jack tasks, are discussed here. These two tasks
involved group inheritance, a feature of the NTFS permis-
sions model that is especially error-prone. Four tasks were
excluded from analysis: one had flawed instructions; two
were too easy, providing no discrimination between inter-
faces; and one was not analyzed due to time constraints.

The Wesley and Jack tasks required participants to set
permissions on a text file so that the entities “Wesley” or
“Jack” could read the file, but could not change it. The task
statement presented to participants for each task was identi-
cal except for the names of specific files, users, and groups.
The task statement for the Wesley task read as follows:

The group ProjectF is working on projectF-
data.txt, so everyone in ProjectF can read, write,
or delete it. Wesley (username: wesley) has
just been reassigned to another project and must
not be allowed to change the file’s contents, but
should be allowed to read it. Make sure that ef-
fective now, Wesley can read the file projectF-
data.txt, but in no way change its contents.

The difference between the Wesley and Jack tasks was
the way in which permissions were initially set up. In each
task, there was one group (ProjectF or ProjectE, for the
Wesley and Jack tasks, respectively) that was already on the
access control list (ACL) for the file, and the operative in-
dividual user (Wesley or Jack) was a member of that group.
The difference between the two tasks was that in the Wesley
task, Wesley was inheriting READ and WRITE permissions
from ProjectF, but not ADMINISTRATE permission, while
in the Jack task, Jack was inheriting READ and WRITE as
well as ADMINISTRATE permissions from ProjectE.

The simple solution to the Wesley task was to add Wes-
ley to the ACL and explicitly deny him WRITE permission;
he was already allowed READ permission from ProjectF.
However, this simple solution did not work for Jack, since
Jack was inheriting ADMINISTRATE permission as well as
READ and WRITE permission. If Jack was denied WRITE

permission, but not explicitly denied ADMINISTRATE per-
mission, he would have been able to restore his WRITE per-
mission. The task statement presented to users did not men-
tion this nuance; it was left to the interfaces to provide the
cues needed to understand that Jack’s ADMINISTRATE per-
mission had to be removed.

6.4 Rules for completing tasks
To ensure as realistic an environment as possible with-

out compromising the experimental comparison between
the two interfaces, it was necessary to establish certain rules
for participants’ interaction. First, participants in both inter-
face conditions were allowed to look up group membership
information using the XP Computer Management interface,
which is a separate application from the file-permissions in-
terfaces. However, participants were instructed not to use
this interface to change group permissions. Had they been
allowed to do so, they could have solved the Wesley and
Jack tasks by removing Wesley or Jack from their respec-
tive groups without using the file-permissions interfaces,
which would have defeated the purpose of comparing XPFP
to Salmon. Second, to compensate for the restriction on
changing group memberships, participants were told that
if a task statement did not explicitly mention a given user,
any permission setting was permissible for that user. Thus,
participants could change the permission settings for the
groups ProjectE or ProjectF and not be concerned about
the effects of these permission changes on members of the

Proceedings of the 2005 International Conference on Dependable Systems and Networks (DSN’05)

0-7695-2282-3/05 $20.00 © 2005 IEEE

groups other than Wesley and Jack. Finally, participants
were allowed to access a set of online Windows Help files
that applied to setting NTFS permissions, but they were not
permitted to browse the entire set of Windows Help files.

6.5 Procedure
Participants were asked to think aloud during their ses-

sions, and were instructed in doing so according to direc-
tions adapted from Ericsson and Simon [6]. Participants
were shown how to view system users, groups, and group
memberships using the XP Computer Management inter-
face, and were shown how to access Help files. Partici-
pants were not given any instruction in using the XPFP or
Salmon interfaces. Following instruction on the XP Com-
puter Management interface and the Help files, participants
were given the tasks. Before each task, the experimenter
brought up the interface the participant was to use for the
experiment. Then task statements were presented in text in
a Web browser; these remained available to the participant
throughout the task. All participants were given the training
task first, but after that, presentation order of the remain-
ing tasks was counterbalanced among participants using a
Latin square design. Participants were given 8 minutes to
complete each task (an expert could complete the task in
under one minute).

7 Data analysis
Data from the user studies were analyzed for speed, ac-

curacy, and error counts. Speed was straightforward to mea-
sure using time to task completion. Data analysis for accu-
racy and error results consisted of the following five steps:

1. For each of the two tasks, Wesley and Jack, apply a
Hierarchical Task Analysis (HTA: see Section 7.1) to
determine the steps necessary to complete the task;

2. For each task instance, determine whether the user suc-
ceeded or failed at completing the task;

3. For each task instance, list all actions taken by the user;
4. For each action taken, classify it as an error or a non-

error by comparing it to the steps listed in the HTAs;
5. For each error, classify it as one of four types of error:

goal, plan, action, or perception.

7.1 Step 1: Hierarchical Task Analysis
To aid in the identification of errors, a Hierarchical Task

Analysis (HTA) was applied to the Wesley and Jack tasks.
HTA, as described by Kirwan [8], is a tool for breaking a
task into its constituents - the goals, plans, and actions re-
quired to complete the task. An HTA diagram for the Jack
task is shown in Figure 3. As the figure shows, each task
has a root goal that is decomposed into subgoals, which are
in turn decomposed into actions. Plans express constraints
on the choice or ordering of actions.

Goal: Jack should be allowed to read but not change the file

Subgoal 1: Allow jack
effective READ permission

Subgoal 2: Override or
eliminate ProjectE's
WRITE permission

Subgoal 3: Override or
eliminate ProjectE's

ADMINISTRATE permission

1.1 Add
jack

2.2 Deny
jack WRITE

3.2 Deny jack
ADMINISTRATE

1.2 Allow
jack READ

2.4 Remove
ProjectE

2.3 Deny or Unset
ProjectE’s WRITE

permission

3.3 Deny or Unset ProjectE’s
ADMINISTRATE permission

1.3 Let jack inherit
READ permission from

ProjectE

2.1 Add
jack

3.4 Remove
ProjectE

3.1 Add
jack

PLAN: 1.1-1.2
in order OR 1.3

PLAN: 2.1-2.2 in
order OR 2.3 OR 2.4

PLAN: Any order

PLAN: 3.1-3.2 in
order OR 3.3 OR 3.4

Figure 3: Hierarchical Task Analysis of the Jack task.

7.2 Step 2: Determining task success or failure
To determine task successes and failures, participants’ fi-

nal permission settings were examined. A task was judged
successful if the operative individual (Wesley or Jack) had
effective permissions allowing him READ permission and
denying him WRITE and ADMINISTRATE permissions. A
task was judged a failure if the operative individual had ef-
fective permissions denying READ permission, or allowing
WRITE and/or ADMINISTRATE permission. EXECUTE and
DELETE permissions and all permissions for other entities
were ignored.

7.3 Step 3: Listing actions
Actions were defined for the purpose of dividing user

protocol data into discrete units for error analysis. An action
was defined as any change to the access control list (ACL),
i.e., adding an entity to or removing an entity from the ACL,
or altering the permissions of an entity already on the ACL.

7.4 Step 4: Classifying actions as errors
Once actions for each task instance were listed, they

were compared to the actions listed in the HTA for the corre-
sponding task (Wesley or Jack). Each discrepancy between
user actions and HTA actions was classified as an error of
commission, an error of omission, or a non-error. A user
action was an error of commission if it was unnecessary
according to the HTA and could lead to failure if not recov-
ered from. A user action was an error of omission if it was a
necessary action according to the HTA, but the user failed to
complete it. Non-errors included user actions that matched
actions in the HTA, and unnecessary but innocuous actions,
such as changing permissions in an interface to “see what
happens” and then changing them back.

7.5 Step 5: Classifying errors by THEA type
Pocock et al.’s THEA [14] proposes four stages of hu-

man information processing that map directly to the four er-

Proceedings of the 2005 International Conference on Dependable Systems and Networks (DSN’05)

0-7695-2282-3/05 $20.00 © 2005 IEEE

ror types used to categorize errors in this work: goal, plan,
action, and perception errors. Because error classification
was not their main objective, Pocock et al. are not perfectly
clear about the criteria for classifying a specific error as one
of the four THEA types. However, all attempts were made
to ensure that the error classification criteria used for this
work remained faithful to Pocock et al.’s descriptions of the
four types. Since goal errors are the focus of this paper, the
criteria used to classify errors as goal errors are described
below. Similar criteria were used for classifying the remain-
ing errors as action, plan, or perception errors.

The data used to classify errors into types included ver-
bal protocol, screen video, and mouse and keyboard logs.
An error was classified as a goal error if it was either:

• An error of commission that was due to the user estab-
lishing a wrong subgoal; or

• An error of omission that was due to the user failing to
establish a necessary subgoal.

Establishment of subgoals was determined mainly from
the intentions users stated in their think-aloud protocols. An
example of a common goal error from the Wesley task was
a user failing to explicitly deny Wesley WRITE permission.
In the Jack task, both failing to explicitly deny Jack WRITE

permission (omitting subgoal 2 in Figure 3), and failing to
explicitly deny Jack ADMINISTRATE permission (omitting
subgoal 3 in Figure 3), were common goal errors.

There are numerous other frameworks that could be used
to classify human error. THEA was chosen because it was
specifically designed for evaluating user interfaces, and be-
cause of its grounding in the familiar work of Norman [13].

8 Results
The Salmon and XPFP interfaces were evaluated with

respect to speed, accuracy, and number of goal errors com-
mitted. Results for each of these are given in this section.

8.1 Speed
Salmon and XPFP were roughly comparable in speed,

as measured by average time to task completion. Figure
4 shows the average time to task completion for all XPFP
and Salmon users, and successful XPFP and Salmon users.
Since many users who failed using XPFP failed by omit-
ting essential task steps, they tended to reduce the aver-
age time to task completion, so comparing only success-
ful users across the interfaces gives a more meaningful
comparison. Although Salmon moderately outperformed
XPFP in speed amongst successful users in both the Wesley
(XPFP: M=208 seconds, sd=116; Salmon: M=183 sec-
onds, sd=138) and Jack (XPFP: M=208 seconds, sd=42;
Salmon: M=173 seconds, sd=109) tasks, the difference
between the two interfaces was not statistically signifi-
cant (one-sided t-test for Wesley: t=0.3942, df=14.39,

Task
Wesley task Jack task

T
im

e
(s

ec
on

ds
)

50

100

150

200

250

0

Average Time to Task Completion

All XPFP users
All Salmon users
Successful XPFP users only
Successful Salmon users only

Figure 4: Average time to task completion for the Wesley
and Jack tasks. Amongst successful users, Salmon moder-
ately outperformed XPFP in time to task completion, but
the differences were not statistically significant.

p=0.3496; for Jack: t=0.8973, df=9.367, p=0.1961). Still,
the results are of interest because they show that Salmon’s
gains in accuracy (next section) over XPFP are not simply
due to a speed-accuracy tradeoff.

8.2 Accuracy

Table 1 shows the percentage of participants who suc-
cessfully completed the Wesley and Jack tasks on the XPFP
and Salmon interfaces. For the Wesley task, 7 of 12 XPFP
users (58%) and 10 of 12 Salmon users (83%) successfully
completed the task. For the Jack task, 3 of 12 XPFP users
(25%) and 12 of 12 Salmon users (100%) successfully com-
pleted the task. These numbers represent a 43% improve-
ment in accuracy for Salmon over XPFP on the Wesley task
and a 300% improvement on the Jack task. A one-sided z-
test for equality of proportions showed Salmon’s superiority
over XPFP in successful task completions to be weakly sig-
nificant for the Wesley task (z=1.347, p=0.089) and strongly
significant for the Jack task (z=3.795, p < 0.0001).

Wesley task Jack task
XPFP 58% 25%
Salmon 83% 100%

Table 1: Accuracy rates for the Wesley and Jack tasks on
the XPFP and Salmon interfaces. Salmon showed 43% and
100% improvements in accuracy over XPFP on the Wesley
and Jack tasks, respectively.

Proceedings of the 2005 International Conference on Dependable Systems and Networks (DSN’05)

0-7695-2282-3/05 $20.00 © 2005 IEEE

Goal Plan Action Perception
Wesley
XPFP 5 1 0 3
Salmon 1 2 1 0

Jack
XPFP 15 0 0 1
Salmon 1 3 2 0

Table 2: Count of errors by type for Wesley and Jack tasks
on XPFP and Salmon interfaces. Salmon users committed
significantly fewer goal errors than did XPFP users for both
the Wesley and Jack tasks.

8.3 Goal Errors
The error analysis revealed a substantial reduction in the

number of goal errors committed by Salmon users, com-
pared to XPFP users. For the Wesley task, XPFP users made
9 total errors, of which 5 were goal errors, while Salmon
users made 4 total errors, of which one was a goal error (see
Table 2). This represents an 80% reduction in average goal
errors per participant for Salmon (M=0.083, sd=0.29) over
XPFP (M=0.42, sd=0.51). A one-sided z-test for equal-
ity of proportions showed this difference to be statistically
significant (z=-1.885, p=0.0297) at the 0.05 level. For the
Jack task, XPFP users made 16 total errors, of which 15
were goal errors, while Salmon users made 6 total errors, of
which one was a goal error (see Table 2). This represents
a 94% reduction in goal errors per participant for Salmon
(M=0.083, sd=0.29) over XPFP (M=1.33, sd=0.87). A
one-sided z-test showed this difference to be statistically
significant (z=-3.312, p=0.0005) at the 0.05 level. It can be
concluded that Salmon performs better than XPFP in miti-
gating goal errors.

Error analysis results show that the Salmon interface led
users to more plan and action errors than did XPFP. How-
ever, the impact of these errors was not as significant as
was the impact of goal errors, because while most goal er-
rors led directly to task failure, most plan and action errors
were recovered from. Nevertheless, plan and action errors
in Salmon bear further investigation.

9 Discussion
The improvement in task-completion successes, and the

dramatic reduction in goal errors achieved in the Salmon
study, can be accounted for primarily by the use of anchor-
based subgoaling in the design of the Salmon interface.
Although Salmon’s design contains numerous superficial
changes from the XPFP design (such as different fonts,
labels, icons, colors, and layout), observation of partic-
ipants’ protocols strongly suggested that it was the ef-

fective permissions display that led users to formulate
the correct goals. For example, one Salmon participant,
about to commit an incorrect solution on the Jack task,
said, “I see Jack over here now [pointing to Jack’s stated
permissions], and he doesn’t have any access rights...
Oh, wait! Jack has access rights over here [pointing to
Salmon’s effective-permissions display].” After noticing
the effective-permissions display, the participant was able
to correctly complete the task. In contrast, several XPFP
users, looking at Wesley’s stated permissions in the XPFP
window as shown in Figure 1, thought that Wesley was al-
lowed READ permission because his “Allow Read” check-
box is checked, but was not allowed WRITE permission,
because his “Allow Write” checkbox is not checked. They
did not realize that he has effective WRITE permission from
ProjectF. One such XPFP participant, looking at the XPFP
window in the state shown in Figure 1, said, “And appar-
ently his permissions are just READ. That’s what we want.”
He had not explicitly denied WRITE permission to Wes-
ley, and committed his incorrect solution. In the absence
of correct information to confirm that the task was com-
plete, the participant used incorrect information, the stated
permissions, to “confirm” that he had correctly completed
the task.

10 Conclusion
In the course of completing tasks with a user interface,

users look for information to formulate goals and to check
progress. When the necessary information is misleading or
absent, users fail to establish the correct goals and hence
make goal errors. Goal errors may lead to partial or total
task failure, and to the extent that interfaces lead to goal
errors, they are undependable. Many goal errors can be pre-
vented by providing a comprehensive and correct external
representation of the information relevant to completing the
user’s root goal. The design principle which calls for such
a representation has been named anchor-based subgoaling.

The Windows XP file permissions interface, which does
not use anchor-based subgoaling, was shown to have un-
acceptably low success rates, 58% and 25%, on two rep-
resentative permission-setting tasks. Salmon, an alternative
interface designed in accordance with the anchor-based sub-
goaling principle, was shown to increase the percentage of
successes to 83% and 100%, respectively, on the same tasks.
Furthermore, user tests with Salmon showed a dramatic re-
duction in the occurrence of goal errors compared to XPFP,
with 80% fewer goal errors on one task and 94% fewer goal
errors on the other. These substantial improvements in suc-
cessful task completion and reductions in goal-error occur-
rence were due to anchor-based subgoaling. These success
rates more closely approach what is needed for depend-
able user interfaces in mission-critical systems like those
required for setting security-related configurations.

Proceedings of the 2005 International Conference on Dependable Systems and Networks (DSN’05)

0-7695-2282-3/05 $20.00 © 2005 IEEE

11 Future work
Anchor-based subgoaling has been demonstrated to be a

successful design technique for reducing goal errors in the
domain of setting file permissions, but the technique will
need to be tested in other task domains before it is fully
proven. Testing in additional task domains will also help
define its limits, and potentially reveal areas in which it can-
not by itself reduce goal errors.

The present work attempted only to reduce one type of
user interface error, goal errors. Future work will look at
means to reduce plan, action, and perception errors.

12 Acknowledgements
The authors are grateful for help from our colleagues

Fahd Arshad, David Banks, Patricia Loring and Rachel
Roberts. This work was partially supported by the Army
Research Office through grant number DAAD19-02-1-0389
(“Perpetually Available and Secure Information Systems”)
to Carnegie Mellon University’s CyLab, and partially sup-
ported by the Engineering and Physical Sciences Research
Council, United Kingdom, grant number GR/S29911/01.

References

[1] A. Adams and M. A. Sasse. Users are not the enemy. Com-
munications of the ACM, 42(12):41–46, 1999.

[2] D. Balfanz. Usable access control for the World Wide Web.
In Proceedings of 19th Annual Computer Security Applica-
tions Conference, pages 406–415, Los Alamitos, CA, 2003.
IEEE Comp. Society. 08-12 Dec 2003, Las Vegas, NV.

[3] D. Besnard and B. Arief. Computer security impaired by le-
gitimate users. Computers & Security, 23(3):253–264, 2004.

[4] S. Card. Information visualization. In J. A. Jacko and
A. Sears, editors, The Human-Computer Interaction Hand-
book: Fundamentals, Evolving Technologies and Emerg-
ing Applications, chapter 28, pages 544–582. Lawrence Erl-
baum Associates, Mahwah, NJ, 2003.

[5] P. Dewan and H. Shen. Controlling access in multiuser inter-
faces. ACM Transactions on Computer-Human Interaction,
5(1):34–62, 1998.

[6] K. A. Ericsson and H. A. Simon. Protocol Analysis: Ver-
bal Reports as Data. MIT Press, Cambridge, MA, Revised
edition, 1993.

[7] N. S. Good and A. Krekelberg. Usability and privacy: a
study of Kazaa P2P file-sharing. In Proceedings of the ACM
Conference on Human Factors in Computing Systems (CHI
2003), pages 137–144, New York, NY, 2003. ACM Press.
05-10 April 2003, Fort Lauderdale, Florida.

[8] B. Kirwan. A Guide to Practical Human Reliability Assess-
ment. Taylor & Francis, London, United Kingdom, 1994.

[9] A. C. Long, C. Moskowitz, and G. Ganger. A prototype user
interface for coarse-grained desktop access control. Tech-
nical Report CMU-CS-03-200, Comp. Sci. Dept, Carnegie
Mellon University, Pittsburgh, PA, Nov. 2003.

[10] Microsoft Corporation. Best practices for permis-
sions and user rights. Available at http://www.
microsoft.com/resources/documentation/

windowsserv/2003/stand%ard/proddocs/
en-us/sag_SEconceptsImpACBP.asp, 2005.

[11] Microsoft Corporation. Microsoft Technet: Windows XP
file permissions documentation, 2005. http://www.
microsoft.com/technet/treeview/default.
asp?url=/technet/prod%technol/winxppro/
proddocs/acl_special_permissions.asp.

[12] J. Nielsen and R. L. Mack. Usability Inspection Methods.
John Wiley & Sons, Inc., New York, NY, 1994.

[13] D. A. Norman. The Design of Everyday Things. Doubleday,
New York, NY, 1988.

[14] S. Pocock, M. Harrison, P. Wright, and P. Johnson. Thea:
A technique for human error assessment early in design.
In Proceeding of 8th IFIP TC.13 Conference on Human-
Computer Interaction, pages 247–254, Amsterdam, 2001.
IOS Press. 09-13 July 2001, Tokyo, Japan.

[15] J. Reason. Human Error. Cambridge University Press, Cam-
bridge, UK, 1990.

[16] G. Sampemane, P. Naldurg, and R. H. Campbell. Ac-
cess control for active spaces. In Proceedings of the 18th
Annual Computer Security Applications Conference, pages
343–352, Los Alamitos, CA, 2002. IEEE Computer Society.
09-13 December 2002, Las Vegas, NV.

[17] J. W. Senders and N. P. Moray. Human Error: Cause,
Prediction, and Reduction. Lawrence Erlbaum Associates,
Hillsdale, New Jersey, 1991.

[18] R. Smith. Personal communication, March 2004.
[19] U.S. Senate Sergeant at Arms. Report on the in-

vestigation into improper access to the Senate Ju-
diciary Committees computer system. Available at
http://judiciary.senate.gov/testimony.
cfm?id=1085&wit_id=2514, March 2004.

[20] A. Whitten and J. Tygar. Why Johnny can’t encrypt: A
usability evaluation of PGP 5.0. In Proceedings of the
8th USENIX Security Symposium, pages 169–184, Berke-
ley, California, 1999. USENIX Association. 23-26 August
1999, Washington, DC.

[21] D. A. Wiegmann and S. A. Shappell. A Human Error Ap-
proach to Aviation Accident Analysis. Ashgate Publishing
Co., Aldershot, Hants, United Kingdom, 2003.

[22] D. D. Woods and E. M. Roth. Cognitive systems engi-
neering. In M. Helander, editor, Handbook of Human-
Computer Interaction, chapter 1, pages 3–43. Elsevier Sci-
ence Publishers B.V., Amsterdam, The Netherlands, 1st edi-
tion, 1988.

[23] K. Yee. User interaction design for secure systems. In In-
formation and Communications Security, 4th International
Conference, ICICS 2002, Singapore, Lecture Notes in Com-
puter Science, Vol. 2513, pages 278–290, New York, NY,
2002. Springer. 09-12 December 2002, Singapore.

[24] M. E. Zurko, R. Simon, and T. Sanfilippo. A user-centered,
modular authorization service built on an RBAC foundation.
In Proceedings 1999 IEEE Symposium on Security and Pri-
vacy, pages 57–71, Los Alamitos, CA, 1999. IEEE Com-
puter Security Press. 09-12 May 1999, Berkeley, California.

[25] M. E. Zurko and R. T. Simon. User-centered security. In
Proceedings of Workshop on New Security Paradigms, pages
27–33, New York, NY, 1996. ACM Press. 17-20 September
1996, Lake Arrowhead, CA.

Proceedings of the 2005 International Conference on Dependable Systems and Networks (DSN’05)

0-7695-2282-3/05 $20.00 © 2005 IEEE

