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Abstract

Delays and errors are the frequent consequences of
people having difficulty with a user interface. Such de-
lays and errors can result in severe problems, particularly
for mission-critical applications in which speed and ac-
curacy are of the essence. User difficulty is often caused
by interface-design defects that confuse or mislead users.
Current techniques for isolating such defects are time-
consuming and expensive, because they require human an-
alysts to identify the points at which users experience dif-
ficulty; only then can diagnosis and repair of the defects
take place. This paper presents an automated method for
detecting instances of user difficulty based on identifying
hesitations during system use. The method’s accuracy was
evaluated by comparing its judgments of user difficulty with
ground truth generated by human analysts. The method’s
accuracy at a range of threshold parameter values is given;
representative points include 92% of periods of user diffi-
culty identified (with a 35% false-alarm rate); 86% (24%
false-alarm rate); and 20% (3% false-alarm rate). Appli-
cations of the method to addressing interface defects are
discussed.

1 Introduction

Undependable user interfaces present a major obstacle
to achieving overall system dependability. Avizienis et al.
[1], in outlining current challenges to dependable comput-
ing, state this in no uncertain terms:

The problems of complex human-machine inter-
actions (including user interfaces) remain a chal-
lenge that is becoming very critical – the means
to improve their dependability and security need
to be identified and incorporated.

User interface dependability can be defined as the extent
to which a user interface allows human users to complete
intended goals within specified speed and accuracy targets.
When an interface prevents users from meeting these speed
and accuracy targets, defects in the design of the interface
are likely to be at fault. Following Maxion and deChambeau
[16], a user interface defect is defined here as any aspect of a
user interface that impairs a user’s ability to achieve a goal.
Examples of such defects include ambiguous labels on in-
terface controls, incomprehensible instructions, confusing
icons, and inadequate system-status feedback. Such de-
fects can confuse users, causing delays and errors in users’
progress toward goal completion.

Interface dependability can only be achieved if interface
defects are detected, diagnosed, and recovered from. How-
ever, merely detecting user-interface defects has proven to
be a very difficult problem. A variety of techniques, in-
cluding inspection-based methods (usability experts inspect
interface designs for defects), user modeling (a software
model of a human user is built and used to simulate inter-
action with an interface), user opinion surveys, field obser-
vation of users at work, and laboratory user testing have
been studied by researchers and used in practice [2, 5, 11].
However, all of these methods have significant weaknesses,
including both failure to detect defects (misses) and classi-
fication of non-problematic aspects of interfaces as defects
(false alarms). Of all available methods, observation-based
techniques, i.e., field observation and laboratory user test-
ing, are generally accepted as the best for acquiring valid
results. Nielsen [19, p. 165] says:

[T]esting with real users is the most fundamental
usability method and is in some sense irreplace-
able, since it provides direct information about
how people use computers and what their exact
problems are with the concrete interface being
tested.

Proceedings of the 2006 International Conference on Dependable Systems and Networks (DSN’06) 
0-7695-2607-1/06 $20.00 © 2006 IEEE 



The primary drawbacks of observation-based techniques
are their expense in terms of usability-analyst time, and
their unreliability due to analyst error. Whether conducted
in the field or in the laboratory, these techniques require
one or more expert usability analysts to observe user actions
with an interface, and to record instances of user difficulty,
which is symptomatic of an interface defect. Usability-
analyst time can be quite expensive; Nielsen valued it at
US$100 per hour in 1993 [21]. The expense of usability-
analyst time often limits the amount of user data that can
be covered. Thus, rarely-manifested defects may be missed
during testing. Besides their expense, usability analysts are
error prone; they’re human. They may fail to notice in-
stances of user difficulty, either because such instances oc-
cur too rapidly for the analyst to record them all, or be-
cause they occur so infrequently that analysts lose vigilance
[19, 23]. Analyst error is another cause of missed defects.
Although this kind of error can be mitigated by videotap-
ing and later reviewing user sessions, reviewing videotapes
introduces more expense; Nielsen estimates that reviewing
videotape can take three to ten times as long as the original
user test [19].

This paper introduces a method, called hesitation detec-
tion, or automatically detecting instances of user difficulty.
An instance of user difficulty is defined as an instance in
which a user’s ability to achieve a goal is impaired; so, by
definition, user difficulty is symptomatic of an interface de-
fect. The method identifies hesitations, defined as anoma-
lously long pauses, in users’ interactions with the mouse
and keyboard. Although such hesitations can occur for
many reasons, they often indicate user difficulty. Like other
methods for interface defect detection, hesitation detection
accuracy can be characterized by two measures: first, by the
percentage of all user difficulties that it detects (the hit rate),
and second, by the percentage of benign events that it mis-
takenly classifies as difficulties (the false-alarm rate). This
paper addresses the question of how accurate, in terms of hit
rate and false alarm rate, hesitation detection is at detecting
instances of user difficulty and, hence, interface defects.

Assuming it does have the ability to detect instances of
user difficulty accurately, hesitation detection provides sev-
eral significant enhancements to observation by a human us-
ability analyst alone. First, it is cheap; since hesitation de-
tection is automated, it can save human-analyst time. Sec-
ond, it provides better coverage; much more data can be
searched for instances of user difficulty than could feasibly
be searched by a human analyst alone. Third, it is immune
to human error; it does not miss instances of user difficulty
due to limited attention or to lack of vigilance. Finally, its
results are repeatable; it is a deterministic method.

To address the question of hesitation detection accuracy,
a hesitation detector was implemented and its output was
compared with a usability analyst’s ratings of user difficulty

for a laboratory user study. In the user study, usability data
were collected from users performing tasks with two dif-
ferent interfaces for setting file permissions on a Windows
XP system. The users were instructed to think aloud as
they worked, explaining what they were doing at each point
in the task [6]. Mouse and keyboard data were collected
and subjected to hesitation analysis, while screen video and
think-aloud audio recordings were collected and subjected
to analysis by a human usability expert. Both methods, hes-
itation detection and expert analysis, produced judgments
of periods during which users had difficulty with the inter-
faces.

Using expert judgment as ground truth, the hit and false-
alarm rates of the hesitation detector were computed. The
hesitation-detection method allows these accuracy rates to
be tuned according to a sensitivity parameter, so a re-
ceiver operating characteristic (ROC) curve, which shows
the tradeoff between hit and false-alarm rates as the sensi-
tivity parameter is adjusted, was computed. Representative
points on the ROC curve include a 100% hit rate with a 63%
false-alarm rate; a 92% hit rate with a 35% false-alarm rate;
an 86% hit rate with a 24% false-alarm rate; and a 20% hit
rate with a 3% false alarm rate.

Although these results may at first appear disappointing,
they are in fact quite good, providing a substantial improve-
ment over previous results, and providing a foundation for
huge economies in analyst time savings. For example, at
one detector sensitivity value, under very conservative as-
sumptions about how an analyst works, 60% of an analyst’s
time can be recovered while still detecting 81% of all de-
fects. This computation assumes an ideal analyst who re-
quires only one viewing of the data; for any real analyst,
time savings would be as high as 96%. Furthermore, the
saved time could be used to scan more data, which would
reveal more defects, possibly including those not previously
presented to the detector. It is concluded that hesitation de-
tection can provide significant aid to human analysts in de-
tecting interface defects.

2 Objective and approach

This paper addresses the following research question:

With what accuracy can instances of user diffi-
culty be detected through automated hesitation
detection?

This question is important because hesitations do not al-
ways indicate difficulty, and user difficulty is not always
manifested as hesitations. So, in order to determine whether
hesitation detection has any potential application to inter-
face defect detection, it is first necessary to measure its ac-
curacy. To clarify this research question, the terms hesita-
tion detection, user difficulty, and accuracy are defined and
explained forthwith.
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2.1 Hesitation detection method

The hesitation detector employed in this study is an al-
gorithm that takes as input a time-stamped, chronologically
ordered data stream of mouse and keyboard events, includ-
ing mouse movements, mouse clicks, and keystrokes. It
outputs a list of hesitations – anomalously long pauses be-
tween events in the data stream. Anomalously long pauses
are identified by computing the latency between every pair
of consecutive events in the data stream, computing the
average-length latency between events, and outputting those
latencies that exceed a certain threshold. The threshold
is specified as a number of standard deviations from the
average-length latency. The threshold value serves as a sen-
sitivity parameter for the detector. A low threshold value
will cause the detector to classify more pauses as hesita-
tions, thus potentially outputting more hits at the risk of
also outputting more false alarms. A high threshold value
will cause the detector to classify fewer pauses as hesita-
tions, thus potentially reducing false alarm output at the risk
of more misses. Note that individual differences in mouse
and keyboard activity are taken into account by computing
a latency average and standard deviation independently for
each user. Thus, hesitations are defined relative to each
user, and are still valid for users who use input devices un-
usually quickly or slowly.

2.2 User difficulty

User difficulty is, conceptually, an internal cognitive state
in which the ability to achieve a goal is impaired. This state
can be characterized colloquially as confusion, frustration,
uncertainty, lack of knowledge, indecision, etc. Since “user
difficulty,” defined this way, is not directly observable from
usability test data, it must be inferred from events that are
directly observable in data, such as video and think-aloud
audio recordings. Thus, an operational definition of “user
difficulty” is needed. For the purposes of the present work,
the criteria listed below were used by human usability ex-
perts to determine the onsets and offsets of periods of user
difficulty. These criteria constitute an operational definition
of “user difficulty.” Note that even these relatively objec-
tive criteria have some room for subjectivity, e.g., deciding
which statements constitute confusion. This subjectivity in
determining user difficulty was measured by comparing the
extent of agreement among multiple raters; section 4 con-
tains details.

2.2.1 Criteria for onset of user difficulty

Five criteria were used to signal the onset of a period of user
difficulty. These five criteria are directly observable events
in video and think-aloud audio data. The five criteria are:

1. User statements: These occur when a user makes a
statement or asks a question indicating confusion, frus-

tration, uncertainty, lack of knowledge, or indecision.
Such statements may start with phrases such as:

• “I’m confused about ...”
• “I’m not sure ...”
• “I don’t know ...”
• “I can’t figure out ...”
• “I’m having a problem ...”
• “I assume ...”
• “How do I ...”

2. Silence and inactivity: This occurs when the user
is silent and inactive with both the mouse and key-
board for at least 3 seconds. This 3-second threshold
was arbitrarily chosen, but seemed to be the minimum
amount of silence and inactivity that genuinely indi-
cated confusion in the data used in this study. Silence
or inactivity alone does not necessarily count as diffi-
culty (unless accompanied by one or more of the other
four criteria).

3. Toggling: This occurs when a user toggles an inter-
face control, such as a checkbox, through one or more
full cycles of its various states, without any interven-
ing actions. An example of toggling is when a user
checks, then unchecks, a checkbox. Toggling gener-
ally indicates that a user is confused about what the
control does or about how to operate it.

4. Help access: This occurs when a user consults an on-
line Help file. However, the difficulty is considered
to have started in the period prior to consulting Help.
The period begins on the click preceding the click that
opens the Help window. The assumption is that users
become confused in the period before consulting Help,
so the click that brings up the Help window is too late
to be considered the onset of the period of difficulty.

5. Question to experimenter: This criterion only ap-
plies to user tests in which a human experimenter is
present, as happened in the present study. It occurs
when the user asks a question of the experimenter
about the experiment or the interface being tested.

2.2.2 Criteria for offset of user difficulty

Three criteria were used to signal the offset of a period
of user difficulty. Like the criteria signaling the onset of
user difficulty, these three criteria were observable events in
video and think-aloud data. These three criteria were:

1. Click: This occurs when the user clicks on something
with the mouse, which usually indicates that the user
has moved on from the difficulty. There are two excep-
tions to using the “Click” criterion to end a period of
user difficulty:
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• If the “Toggling” criterion signals the onset of the
period of difficulty, then the period does not end
as long as the user is repeatedly clicking on the
same control. The first click away from that con-
trol may signal the end of the difficulty.

• If the “Help” criterion signals the beginning of
the period of difficulty, then the period does not
end on clicks made while viewing the Help file;
in this case, the “Help dismissed” criterion (see
below) signals the end of the difficulty.

2. User statement: This occurs when the user makes
a verbal assertion to do something, or when the user
states that their confusion has been cleared up. User
statements that signal the end of the difficulty may start
with phrases such as:

• “Ok, I’m going to hit the OK button ...”
• “I’m going to try ...”
• “All right, this looks right ...”

3. Help dismissed: If the “Help” criterion signals the
start of the period of difficulty, then that period ends
when the Help window is closed, minimized, or sent
to background, i.e., when the user stops reading Help
and starts doing something else.

2.2.3 User difficulty and interface defects

A hesitation detector does not detect interface defects di-
rectly; it detects periods of user difficulty that are the likely
consequence of interface defects. Once hesitation-detector
output has been obtained, a usability analyst must examine
other sources of data, usually video and audio of user ses-
sions, to determine which hesitations really indicate diffi-
culty, as well as which particular defects caused each period
of difficulty.

2.3 Accuracy

Accuracy is measured in terms of hit rate and false-
alarm rate. Hit rate is the percentage of all periods of
genuine user difficulty that the detector detects, while false-
alarm rate is the percentage of events for which the detector
incorrectly indicates user difficulty when none was present.
Technical definitions of these terms are given below.

Because the input to hesitation detection is continuous in
time, defining hit rate and false-alarm rate is not as straight-
forward as it is for detectors in which inputs are discrete.
Thus, to make hit-rate and false-alarm-rate computation
more straightforward, time is divided into discrete blocks.
For each block, ground truth either designates the entire
block as a period of user difficulty or a period of user non-
difficulty. Also, for each block, the detector either classi-
fies the block as a hesitation or a non-hesitation. A hit is

any block that is designated as a period of user difficulty by
ground truth and classified as a hesitation by the detector.
A false alarm is any block that is designated as a period of
user non-difficulty by ground truth but classified as a hesi-
tation by the detector. Hit rate is defined as the number of
hits divided by the number of blocks designated as periods
of user difficulty by the ground truth. False-alarm rate is
defined as the number of false alarms divided by the num-
ber of blocks designated as periods of user non-difficulty by
the ground truth.

There are two reasonable ways to define a block:

1. A block is any contiguous portion of time during which
the user experienced uninterrupted difficulty; under
this definition, block length is variable, depending on
the length of periods of user difficulty.

2. A block is a pre-defined, short amount of time, e.g.,
one second; under this definition, all blocks are the
same length.

This paper uses both definitions of blocks. The former
definition of blocks is used for hit-rate computation, while
the latter is used for false-alarm-rate computation. The jus-
tification for using both definitions lies in the application of
hesitation detection as a tool to help an analyst identify in-
terface defects. In this application, it is not important that
a hesitation lasts for the entire duration of a period of user
difficulty; it is only important that a hesitation occurs some-
where within the period of difficulty, so that the difficulty
will be brought to the analyst’s attention. The analyst will
then determine the full extent of the difficulty. Thus, so
long as a hesitation occurs anywhere within a block of un-
interrupted difficulty, that block is considered a hit. Alter-
natively, the penalty paid for a false alarm is that a usability
analyst will have to examine only the portion of the data that
constitutes the false alarm (plus, perhaps, a small amount of
context); it is not necessary for the analyst to examine the
entire period of contiguous non-difficulty. Thus, it makes
sense to simply choose a small, uniform block size for com-
puting false alarm rate. One second was chosen, because it
is short enough that no major transitions from non-difficulty
to difficulty occur within it.

2.4 Approach

The approach taken to answering the research question
posed has the following four stages:

1. Data collection: Collect mouse, keyboard, video, and
think-aloud audio data from users performing a task
with either of two different user interfaces.

2. Hesitation detection: Use a hesitation detector to de-
termine hesitations based on mouse and keyboard data.
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3. Ground-truth determination: Have a usability ex-
pert determine ground-truth user difficulty from the
video and audio data according to the criteria in sec-
tion 2.2.

4. Accuracy computation: Compute the accuracy of
hesitations as an indicator of user difficulty by com-
paring the hesitations with the ground truth.

Section 4 details the methodology.

3 Related work
Commonly used methods for user interface defect de-

tection fall into four broad categories: inspection meth-
ods, model-based methods, surveys, and observation-based
methods. Inspection methods, such as heuristic evaluation
[20] and cognitive walkthrough [24], involve a usability ex-
pert reviewing an interface or interface specification for de-
fects. They are particularly well-suited to finding defects
in the early stages of the interface design cycle, because
they do not require a working interface; they are notori-
ously inaccurate [3, 4, 12, 13]. Model-based methods, such
as GOMS [9, 10], can give excellent predictions for skilled,
expert performance with an interface, but they are not de-
signed to detect aspects of an interface that may give novice
or occasional users difficulty. Model-based methods also
typically do not make predictions about where users, includ-
ing experts, may make errors. Surveys are rarely applied to
defect detection, but when they are, they tend to give sub-
jective results that are difficult to quantify [5]. Observation-
based methods have the advantages of providing direct data
about what defects affect users, allowing for testing on both
novices and experts, and giving quantitative results. The
primary disadvantages of observation-based methods are
that they generally require at least a prototype implemen-
tation of an interface, and as well as a great deal of analysis
time.

Previous efforts have addressed the idea of using hesi-
tations to determine periods of user difficulty. Maxion and
deChambeau in 1995 were the first to propose using hes-
itation detection to spot user difficulty and identify user-
interface defects [16]. They conducted a user study of
an online library catalog application. The command-line-
based application presented users with prompts for input,
to which users responded with keystrokes. The time be-
tween prompt and response was measured, and times out-
side three standard deviations of the mean were reported
as hesitations. The method yielded 66 hesitations from 12
participants. All hesitations were due to interface defects,
so, remarkably, there were no false positives. However, no
hit rate was reported because no ground truth was avail-
able. Furthermore, it is unclear how the results obtained for
the command-line based library catalog application would

generalize to today’s common desktop applications, which
are typically graphical user interfaces receiving continuous
mouse and keyboard input.

In 1997, Maxion and Syme presented MetriStation, a
software tool for user-study data collection and analysis,
which included a component that analyzed the data for hes-
itations [18]. They made no attempt to measure the hesita-
tion tool’s accuracy, however.

Horvitz et al. in 1998 published their work on Lumiere,
a system for inferring user goals and needs [7]. Lumiere
employed a Bayesian statistical model to, in part, make in-
ferences about when users needed assistance. The authors
listed “introspection,” which is defined similarly to “hesi-
tation” in this paper, as one type of evidence used in their
Bayesian network to infer that a user is having difficulty and
needs assistance. The authors did not, however, measure the
accuracy of either introspection or of the larger Bayes net-
work as a means of detecting user difficulty.

A substantial amount of prior work has explored tech-
niques other than hesitation detection to reduce the amount
of analysis time required for observation-based interface
evaluation. Ivory and Hearst [8] provide a thorough sum-
mary of this work. A few examples of the numerous tools
for aiding usability data analysis include DRUM (Diagnos-
tic Recorder for Usability Measurement) [15], AMME (Au-
tomatic Mental Model Evaluator) [22], and USINE (User
Interface Evaluator) [14]. DRUM records significant user
events, allows analysts to mark up significant points in
usability-test video, and computes metrics like task time,
time users spend having problems, and productive time.
AMME constructs user mental models, interface state tran-
sitions, and quantitative metrics from log data. USINE takes
as input a task model, and compares observed user actions
to the task model to determine where user make errors.
DRUM, AMME, and USINE are representative of numer-
ous similar tools described by Ivory and Hearst.

4 Experimental method

As discussed in section 2.4, the approach encompassed
four stages to address the question of hesitation detection
accuracy: data collection, hesitation detection, ground-truth
determination, and accuracy computation. The methods are
explained below.

4.1 Data collection

Mouse and keyboard data streams, collected from a lab-
oratory user study, were used as input to the hesitation de-
tector evaluated in this work. Screen video and think-aloud
audio from the same study were used by a human analyst
to determine ground-truth periods of user difficulty. This
section provides details on the user study from which these
data were collected.
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4.1.1 User interfaces tested

The data used for this work was collected as part of a lab-
oratory user study comparing two interfaces designed for
setting file permissions in Microsoft’s Windows XP operat-
ing system [17]. The two interfaces tested were the native
Windows XP file-permissions interface and an interface of
the authors’ design called Salmon. Both are graphical user
interfaces, typical of the user interfaces of many of today’s
common desktop applications.

4.1.2 Participants

Twenty-three students and research staff members at
Carnegie Mellon University participated in the study.
Twelve participants were assigned to the XP interface, and
11 were assigned to Salmon. All participants were daily
computer users, but they were only novice or occasional
users of the file permissions interfaces. To establish that
participants were novice or occasional users, they were
asked to rate the frequency with which they set file permis-
sions in their daily work, and to rate their familiarity with
Windows file and folder security. Twenty of 23 participants
reported setting file permissions a few times a month or
less (the other three reported setting file permissions a few
times a week or daily) and 22 out of 23 participants rated
themselves “generally familiar” (10 participants), “vaguely
familiar”(10 participants), or “unfamiliar” (2 participants)
with Windows file and folder security. Only one participant
rated himself “very familiar” with Windows file and folder
security. No participants said their daily work involved
Windows file and folder security. These answers suggest
that the description of users as “novice or occasional” is ac-
curate.

4.1.3 Task

Each participant completed seven file-permissions-setting
tasks using the interface to which they were randomly as-
signed. Data from one of those tasks, called the Jack task,
was used for this study. Of the seven tasks, the Jack task
was chosen because it caused users the most difficulty.

Users were presented with task statements in a Web
browser. They were able to consult the task statement at
any time during their performance of a task. The task state-
ment given to users for the Jack task was:

The group ProjectE is working on projectE-
data.txt, so everyone in ProjectE can read, write,
or delete it. Jack (username: jack) has just been
reassigned to another project and must not be al-
lowed to change the file’s contents, but should be
allowed to read it. Make sure that effective now,
Jack can read the file projectEdata.txt, but in no
way change its contents.

Characteristics of the file-permissions task domain that
may affect the results of the hesitation detector include:

• Goal-oriented. Users had a clear goal to accomplish,
so this task was unlike, for example, browsing the Web
or watching a video. Goal-oriented tasks require users
to keep making progress; hesitations do not further
task completion.

• Very little typing. At most, participants typed a few
one-word usernames, so most hesitations detected in
this study were hesitations in mouse usage.

• Short time-to-completion. Users took 169 seconds
on average to complete the Jack task. The short task
time allowed users to stay focused on the task, thus
removing the potential for false alarms due to taking
breaks, daydreaming, and the like.

• Limited text to read. Textual labels on the interfaces
were limited to a few words (three or less), so the po-
tential for false alarms due to users’ reading long pas-
sages of text was minimal.

Many common tasks, such as system configuration, vot-
ing, and image manipulation, share these characteristics, so
the results obtained by this study would be expected to gen-
eralize to a large class of interfaces and tasks.

4.2 Hesitation detection

A hesitation detector was implemented according to the
algorithm sketched in section 2.1. The sensitivity parame-
ter, which represents the minimum number of standard de-
viations a hesitation must be from the average pause length,
was varied over a range of sensitivities from 0.5 to 24.0 in
steps of 0.5. Mouse and keyboard logs for each user were
provided as input to the detector.

4.3 Ground-truth determination

Ground truth was determined by a usability expert, who
examined the video and audio logs collected from each of
the 23 users during the user study. The criteria listed in
section 2.2 (user statements, silence and inactivity, toggling,
Help access, and questions to the experimenter) were used
to identify periods of user difficulty. For each period of user
difficulty, the onset and offset times were noted.

The expert’s rating of ground-truth user difficulty was
validated by two auxiliary raters’ judgments of difficulty in
6 of the 23 data streams. This validation step was necessary
because, although the criteria were designed to be as objec-
tive as possible, some subjectivity remains (most notably in
the judgment of what user statements indicate confusion).
The two auxiliary raters did not rate all 23 data streams
because of the large time investment involved in doing so.
However, the six data streams they did rate were balanced
in their total length and in the interface used. Two were of
short duration (less than 100 seconds), two were of medium
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Figure 1: Timelines showing ground truth, hesitations, hits, and false alarms for one 364-second user session. The dark black
regions indicate where these respective events occurred over the course of the 364 seconds.

duration (between 100 and 150 seconds), and two were of
long duration (greater than 150 seconds). For each of these
pairs of data streams, one was from an XP user and one
was from a Salmon user. Within these constraints, the six
data streams for validation were chosen at random. Three
timelines, one from each rater, were laid out for each of the
six validation data streams. The timelines were divided into
discrete, one-second-long blocks, and a binary value was
assigned to each block: 1 if the rater determined that the
user was having difficulty during that block, and 0 if not.
The auxiliary raters’ judgments of difficulty were then com-
pared, block-by-block, for agreement with the expert’s rat-
ings of difficulty. Within the six data streams, all three raters
agreed for 68.9% of the data streams, while the expert had
80.0% agreement with the first auxiliary rater and 79.4%
agreement with the second. For two raters, 70% agreement
is generally considered acceptable, so the expert’s judgment
was deemed valid for determining ground truth.

4.4 Accuracy computation

Accuracy was measured in terms of hit rate and false-
alarm rate. Recall the definitions of hit rate and false-alarm
rate from section 2.3. The hit rate is defined as the per-
centage of all periods of user difficulty during which the
hesitation detector finds any genuine hesitation. Note that,
by this definition, the hesitation need not cover the entire
duration of the difficulty period to be considered a hit; it is
assumed that as long as some portion of the difficulty period
is detected, a human analyst will find the full extent of the
difficulty during the diagnosis stage. Note also that multi-
ple hesitations may occur during the same period of diffi-
culty; in this case, only one hit is counted. Hit rate, then,
is simply the number of hits divided by the total number
of distinct periods of difficulty identified by the expert. To
measure false-alarm rate, two timelines were laid out – one

representing the hesitation detector’s output, and one rep-
resenting ground truth. These timelines were divided into
discrete, one-second-long blocks. Each block on the detec-
tor’s timeline was assigned a binary value: 1, if the detec-
tor classified the block as part of a hesitation; 0, otherwise.
Each block on the rater’s timeline was also assigned a bi-
nary value: 1, if the rater designated the block as part of a
period of user difficulty; 0, if not. A false alarm occurred
whenever a block in the detector’s timeline had a value of
1 but the corresponding block in the rater’s timeline was
0. False-alarm rate was computed as the number of false
alarms divided by the total number of blocks in the rater’s
timeline with a value of 0.

Figure 1 shows timelines for ground truth, hesitations
(as output by the detector with sensitivity set to 2.0), hits,
and false alarms for one 364-second user session. The fig-
ure shows five distinct periods of user difficulty consuming
145 seconds, indicated by dark black regions on the ground-
truth timeline. Dark black regions on the hesitations time-
line indicate regions the detector classified as hesitations.
At least one hesitation coincided with each of four of the
five periods of difficulty. These four periods of difficulty are
marked as dark black regions on the hits timeline. For this
user, the detector’s hit rate is 4/5 = 80%. Twenty-nine one-
second blocks were classified as hesitations by the detec-
tor, but designated as periods of non-difficulty in the ground
truth, are marked as dark black regions on the false-alarms
timeline. Since this user experienced 219 seconds of non-
difficulty, the false alarm rate for this user is 29/219 = 13%.

5 Results
In the 23 data streams, there were 3389 total seconds of

user data. According to the ground truth, users had diffi-
culty during 999 of these 3389 seconds, or 29.5% of the
time. There were 66 distinct periods of user difficulty, and
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Figure 2: Receiver operating characteristic (ROC) curve for
the hesitation detector applied to both Salmon and Windows
interfaces’ data. Points on the curve show detector accuracy
at different sensitivities (t = threshold). The sensitivity rep-
resents the number of standard deviations beyond the mean
a pause must be to be classified as a hesitation.

2390 seconds of non-difficulty. These latter two numbers
are the denominators for the hit rate and false-alarm rate
computations, respectively.

The receiver operating characteristic (ROC) curve in Fig-
ure 2 shows the main result of this paper. Each point on an
ROC curve represents the accuracy of the hesitation detec-
tor for a particular value of the sensitivity parameter. The
ROC curve shows how hit rate and false-alarm rate can be
traded off, depending on the demands of a particular appli-
cation. Representative points on the combined curve show
that a 100% hit rate can be achieved if a 63% false alarm
rate is tolerable, a 92% hit rate if a 35% false alarm rate is
tolerable, an 86% hit rate if a 24% false alarm rate is tolera-
ble, and all the way down to a 6.1% hit rate if no false alarms
are tolerable. For some applications, a low false-alarm rate
may be more important than detecting every period of user
difficulty, while other applications may require detecting as
many periods of difficulty as possible, regardless of false-
alarm rate.

The ROC curve in Figure 2 shows results of the hesi-
tation detector applied to both interfaces’ data combined.
ROC curves for the detector applied to the Salmon data and
the Windows data separately are very similar to one another,
as well as to the combined curve; they are not shown sepa-

rately, because they would crowd the figure. The similarity
of the curves for the two different interfaces suggests that
the hesitation detection results are reasonably generalizable
to different interface designs.

6 Discussion
Although the detector results may appear disappointing

at first, they are in fact quite good when considered in the
context of intended use. For example, analysts can spend
less than 13% of typical analysis time, while still detecting
more than 80% of the problem cases.

An example of hesitation detection applied to interface
defect detection provides a concrete idea of how time can
be saved by using hesitation detection. Suppose user data,
namely mouse, keyboard, screen video, and think-aloud au-
dio, have been collected from laboratory user-test sessions.
If a usability analyst were to go through the video and audio
media, searching for instances of user difficulty, it would
take at least as long as the entire length of the media. (This
is a very conservative estimate. In fact, Nielsen [19] es-
timates it takes 3 to 10 times as long as the entire length
of the media; for this study, it took roughly 10 times as
long as the media for the expert to generate ground truth.)
Now suppose that instead of examining the entire media,
a hesitation detector was applied, and the usability analyst
only inspected those portions of the media flagged by the
detector as potential instances of user difficulty. Suppose,
also, that the analyst needed to watch 5 seconds preced-
ing each period flagged by the detector to understand the
context in which the hesitation occurred. (This 5-second
figure is roughly what the authors have found is necessary
in their own experience.) Although the hesitation detector
may miss some instances of user difficulty, the same defect
that caused a missed instance may be detected elsewhere.
The measures of interest are the percentage of all defects
detected and the amount of time saved by using the detec-
tor. Because some defects are manifested multiple times,
and because of the 5 seconds needed by an analyst to gain
context, the raw hit rate and false-alarm rate from the ROC
curve do not quite give the full story.

Table 1 shows, for values of the sensitivity parameter
from 2.0 to 6.0, the percentage of all defects detected (tak-
ing into account multiple manifestations of the same de-
fect), the amount of time an analyst would save using the
detector (taking into account the 5 seconds of prior context
needed), and the hit and false-alarm rates from the com-
bined ROC curve. It can be seen from the table, for exam-
ple, that at a threshold value of 3.0, an analyst would spend
60.1% less time searching through areas of non-difficulty,
while still finding 81.2% of the defects that would be found
by watching the entire media. Again, this is making the
very conservative estimate that an analyst would otherwise
search through the entire media only once. If the analyst
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Detector
sensitivity

Percent
defects
detected

Percent
time
saved

HR FAR

2.0 90.6 43.8 89.4 28.2
3.0 81.2 60.1 77.3 19.0
4.0 71.8 71.6 65.2 13.1
5.0 68.8 78.7 59.1 10.0
6.0 59.4 83.4 51.5 7.8

Table 1: Percentage of all distinct defects detected by the
hesitation detector, percent of analyst time saved, Hit Rate
(HR), and False Alarm Rate (FAR) for five values of the
sensitivity (threshold) parameter (t).

would normally search through the media 3 to 10 times,
time savings would be 87% to 96%, while still finding
81.2% of the defects.

These results show that using hesitation detection to sift
through usability data can make user testing much less time-
consuming for analysts. If desired, the analyst time saved
could be spent by collecting and analyzing more data, which
would likely make up for any defects lost due to misses by
the hesitation detector. More data might also yield defects
that would not have manifested in a smaller data set. If the
percentage of defects detected still seems low, note that only
a perfect analyst would detect 100% of all defects with only
a single pass through the data; in reality, an analyst going
through the data only once will miss numerous defects due
to lack of attention and/or lack of vigilance. Moreover, the
analyst’s performance could be highly variable, while the
detector’s performance is repeatable.

Although a hesitation detector can be useful despite a
high false-alarm rate, it is nevertheless worth looking at
ways the false-alarm rate might be reduced. An informal
look through the false alarms reported by the hesitation de-
tector used in this study shows three top causes of false
alarms: pauses while moving the hands from mouse to key-
board or keyboard to mouse, pauses while checking work
just before committing changes, and pauses to read text
such as unusually long interface labels, error messages, and
Help files. A future version of the hesitation detector might
apply heuristics to detect these causes of false alarms and
thereby reduce the false-alarm rate.

A discussion of hesitation detection should also consider
the method’s limitations. First of all, hesitation detection
will only catch interface defects that manifest as hesitations.
Examples of defects that do not manifest as hesitations in-
clude defects that lead to errors of omission, defects that
only cause brief delays (such as misspellings of labels), and
defects that do not cause egregious hesitations (such as in-
consistent fonts). Second, hesitation detection can only be
applied after running user studies on fully implemented in-

terfaces. Other usability methods, such as inspection-based
methods, can isolate interface defects during the design
stage, thus avoiding the expense of implementing a flawed
design. Third, for some interfaces, such as Web browsers or
multimedia players, hesitation detection might yield an un-
acceptably high false alarm rate because hesitations (to read
text or watch video, for example) are inherently part of us-
ing the interfaces. Finally, hesitation detection can indicate
defects, but does not suggest fixes for those defects.

7 Conclusion

Hesitation detection is a method for detecting instances
of user difficulty, which are symptomatic of interface de-
fects, in streams of data from user-interface test sessions.
It can be applied to both field and lab-based user stud-
ies to save time that a usability analyst would otherwise
have spent combing the data for trouble spots. This pa-
per measured the accuracy of a hesitation detector for data
from user tests of file-permissions-setting interfaces. The
results show that hesitations are an effective means for de-
tecting instances of user difficulty, and that hesitation detec-
tion promises to make usability studies less expensive and
more comprehensive. For example, up to 96% of an ana-
lyst’s wasted time can be saved by using hesitation detec-
tion, while still detecting 81% of all defects manifested in
usability data.

8 Future work
In the present study, hesitation detection was evaluated

in one task domain, namely setting file permissions. The
file-permissions domain shares characteristics with many
common task domains, such as system configuration, vot-
ing, and image manipulation, so the results obtained here
are expected to generalize at least to those domains. Future
work will test the method in these and other task domains,
such as typing-intensive and long-duration tasks.

As discussed in section 6, the hesitation detection algo-
rithm used in this study might be improved by employing
heuristics to eliminate false alarms. A future version of
the hesitation detection algorithm might exclude hesitations
caused by transitions from mouse to keyboard or keyboard
to mouse, pauses to read interface messages, and pauses to
check work.

The study reported in this paper tested hesitation detec-
tion as a method for finding periods of user difficulty from
logs of novice-user sessions. Future work might consider
hesitation detection as a means to detect expert-user diffi-
culty, which can indicate different interface defects from
those indicated by novice-user difficulty.

This paper sought to establish hesitation detection as a
potential method for saving usability analysts’ time. The
results reported here suggest that hesitation detection does
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indeed have great potential to save analyst time. A planned
follow-up study can compare the performance of analysts
using hesitation detection against the performance of ana-
lysts using traditional techniques. This will determine the
actual improvement that can be gained from hesitation de-
tection, and will help to establish hesitation detection as a
practical technique.
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