
Usability Challenges in Security and Privacy
Policy-Authoring Interfaces

Robert W. Reeder1, Clare-Marie Karat2, John Karat2, and Carolyn Brodie2

1 Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh PA 15213, USA
reeder@cs.cmu.edu,

2 IBM T.J. Watson Research Center, 19 Skyline Dr., Hawthorne NY 10532, USA
{ckarat, jkarat, brodiec}@us.ibm.com

Abstract. Policies, sets of rules that govern permission to access re-
sources, have long been used in computer security and online privacy
management; however, the usability of authoring methods has received
limited treatment from usability experts. With the rise in networked ap-
plications, distributed data storage, and pervasive computing, authoring
comprehensive and accurate policies is increasingly important, and is in-
creasingly performed by relatively novice and occasional users. Thus, the
need for highly usable policy-authoring interfaces across a variety of pol-
icy domains is growing. This paper presents a definition of the security
and privacy policy-authoring task in general and presents the results of a
user study intended to discover some usability challenges that policy au-
thoring presents. The user study employed SPARCLE, an enterprise pri-
vacy policy-authoring application. The usability challenges found include
supporting object grouping, enforcing consistent terminology, making
default policy rules clear, communicating and enforcing rule structure,
and preventing rule conflicts. Implications for the design of SPARCLE
and of user interfaces in other policy-authoring domains are discussed.

Keywords: Policy, policy-authoring, privacy, security, usability.

1 Introduction

Policies are fundamental to providing security and privacy in applications such
as file sharing, Web browsing, Web publishing, networking, and mobile comput-
ing. Such applications demand highly accurate policies to ensure that resources
remain available to authorized access but not prone to compromise. Thus, one
aspect of usability, very low error rates, is of the highest importance for user
interfaces for authoring these policies. Security and privacy management tasks
were previously left to expert system administrators who could invest the time
to learn and use complex user interfaces, but now these tasks are increasingly left
to end-users. Two non-expert groups of policy authors are on the rise. First are
non-technical enterprise policy authors, typically lawyers or business executives,
who have the responsibility to write policies governing an enterprise’s handling
of personal information [1]. Second are end-users, such as those who wish to set

C. Baranauskas et al. (Eds.): INTERACT 2007, LNCS 4663, Part II, pp. 141–155, 2007.
c© IFIP International Federation for Information Processing 2007

142 R.W. Reeder et al.

up their own spam filters, share files with friends but protect them from un-
wanted access [2,3,4], or share shipping information with Web merchants while
maintaining privacy [5]. These two groups of non-expert users need to complete
their tasks accurately, yet cannot be counted on to gain the expertise to tolerate
a poorly designed or unnecessarily complex user interface.

Despite the need for usable policy-authoring interfaces, numerous studies and
incidents have shown that several widely-used policy-authoring interfaces are
prone to serious errors. The “Memogate” scandal, in which staffers from one po-
litical party on the United States Senate Judiciary Committee stole confidential
memos from an opposing party, was caused in part by an inexperienced system
administrator’s error using the Windows NT interface for setting file permis-
sions [6]. Maxion and Reeder showed cases in which users of the Windows XP
file permissions interface made errors that exposed files to unauthorized access
[4]. Good and Krekelberg showed that users unwittingly shared confidential per-
sonal files due to usability problems with the KaZaA peer-to-peer file-sharing
application’s interface for specifying shared files [3]. This evidence suggests that
designing a usable policy-authoring interface is not trivial, and that designers
could benefit from a list of potential vulnerabilities of which to be aware.

This paper reports the results of a user study which had the goal of identifying
common usability challenges that all policy-authoring interface designers must
address. The study employed SPARCLE [7], an application designed to support
enterprise privacy policy authoring. However, the study was not intended to
evaluate SPARCLE itself, but rather to reveal challenges that must be addressed
in policy authoring in general. SPARCLE-specific usability issues aside, the study
revealed five general usability challenges that any policy-authoring system must
confront if it is to be usable:

1. Supporting object grouping;
2. Enforcing consistent terminology;
3. Making default rules clear;
4. Communicating and enforcing rule structure;
5. Preventing rule conflicts.

These challenges are explained in detail in the discussion in Sect. 6. Although
these challenges have been identified from a user study in just one policy-
authoring domain, namely enterprise privacy policies, a review of related work,
presented in Sect. 7, confirms that the challenges identified here have been en-
countered in a variety of other policy-authoring domains, including file access
control, firewalls, website privacy, and pervasive computing. This work, however,
is the first we are aware of to describe policy-authoring applications as a general
class and present usability challenges that are common to all.

2 Policy Authoring Defined

“Policy” can mean many things in different contexts, so it is important to give a
definition that is germane to the present work on security and privacy policies.

Usability Challenges in Security and Privacy Policy-Authoring Interfaces 143

For the purposes of this work, a policy is defined as a function that maps sets
of elements (tuples) onto a discrete set of results, typically the set {ALLOW,
DENY} (however, other result sets are possible; for example, Lederer et al.
describe a policy-based privacy system in which tuples representing requests
for a person’s location are mapped to the set {PRECISE, APPROXIMATE,
VAGUE, UNDISCLOSED} [8]). Elements are defined as the attributes rele-
vant to a specific policy domain; the values those attributes can take on are
referred to as element values. Element values may be literal values, such as the
username “jsmith”, or they may be expressions, such as “if the customer has
opted in.” Policies are expressed through rules, which are statements of spe-
cific mappings of tuples to results. Policy authoring is the task of specifying
the element values in a domain, specifying rules involving those elements, and
verifying that the policy comprised by those rules matches the policy that is
intended.

In the privacy policy domain, for example, a policy maps tuples of the form
(<user category>, <action>, <data category>, <purpose>, <condition>) to
the set {ALLOW, DENY} [9]. Here, user category, action, data category, pur-
pose, and condition are elements. ALLOW and DENY are results. An example
privacy policy rule would map the tuple (“Marketing Reps”, “use”, “customer
address”, “mailing advertisements”, “the customer has opted in”) to the value
ALLOW, indicating that marketing representatives can use the customer address
data field for the purpose of mailing advertisements if the customer has opted in.
Here, “Marketing Reps”, “use”, “customer address”, “mailing advertisements”,
and “the customer has opted in” are element values.

To take another example, in the file permissions domain, a policy maps tu-
ples of the form (<principal>, <action>, <file>) to the set ALLOW, DENY.
An example rule might map (“jsmith”, “execute”, “calculator.exe”) to the value
DENY, indicating that the user jsmith cannot execute the program calcula-
tor.exe.

Since the rules in a policy may not cover all possible tuples, policy-based
security and privacy systems typically have a default rule. For example, the
SPARCLE system has the default rule that all 5-tuples of (<user category>,
<action>, <data category>, <purpose>, <condition>) map to DENY. Addi-
tional rules are specified by policy authors and all author-specified rules map a
5-tuple to ALLOW. The default rule need not necessarily be a default DENY; a
default ALLOW is also possible (policies with a default ALLOW rule are often
called “blacklists”, because any element value listed explicitly in the policy is
denied access), or the default can vary according to some values in the tuples
(for instance, a default rule might state that all accesses to shared files on a
computer are allowed by default to local users but denied by default to remote
users). Similarly, user-specified rules need not necessarily map exclusively to AL-
LOW or exclusively to DENY; it is possible to allow users to specify rules that
map to either ALLOW or DENY. However, policy systems that allow users to
specify both types of rules introduce the potential for rule conflicts, which can
be a significant source of user difficulty [10,2,4].

144 R.W. Reeder et al.

3 The SPARCLE Policy Workbench

In the present work, policy authoring usability was investigated through a user
study in which participants used the SPARCLE Policy Workbench application.
SPARCLE is a Web-based application for enterprise privacy policy management.
The application includes a front-end user interface for authoring privacy policies
using a combination of natural language and structured lists. While the current
embodiment of SPARCLE is tailored for the privacy policy domain, the user
interface was designed with an eye toward supporting policy authoring in other
domains such as file access control. From a research perspective, the two inter-
action paradigms supported by SPARCLE, natural language and structured list
entry, can as easily be applied to privacy policy management as to file, network,
system, email, or other policy management. Thus SPARCLE is a suitable tool
for studying policy authoring in the general sense. Portions of the SPARCLE
user interface relevant to the present study are described below; a more complete
description of the SPARCLE system can be found elsewhere [1].

One way to write policy rules in SPARCLE is to use the natural language
interface on the Natural Language Authoring page. The Natural Language Au-
thoring page contains a rule guide, which is a template that reads, “[User Cate-
gory(ies)] can [Action(s)] [Data Category(ies)] for the purpose(s) of [Purpose(s)]
if [(optional) Condition(s)].” This template indicates what elements are expected
in a valid rule. The Natural Language Authoring page further contains a large
textbox for entering rule text. Policy authors can type rules, in natural lan-
guage, directly into the textbox. For example, a rule might read, “Customer
Service Reps, Pharmacists, and Billing Reps can collect and use customer name
and date of birth to confirm identity.” SPARCLE has functionality for parsing an
author’s rules so that it can extract rule element values automatically from the
author’s text. When parsing has completed, the user proceeds to the Structured
Authoring page to see the structured format of the policy.

The Structured Authoring page, shown in Fig. 1, shows the results of parsing
each policy rule. When SPARCLE parses each policy rule, it saves the elements
(i.e., user categories, actions, data categories, purposes, and conditions) found
in that rule. The elements are reconstructed into sentences and shown next to
radio buttons in a list of rules. The lower half of the Structured Authoring
page contains lists of element values, one list for each of the five elements of a
privacy policy rule. These lists contain some pre-defined, common element values
(e.g., “Billing Reps” as a user category, “collect” as an action, or “address” as
a data category) as well as all element values defined by the policy author and
found by the parser in rules written on the Natural Language Authoring page.
Policy authors can also alter these element value lists directly by adding or
deleting elements. When a rule is selected from the list of rules at the top of the
Structured Authoring page, all of the element values in that rule are highlighted
in the lists of element values. Policy authors can edit rules by selecting different
element values from the lists. It is also possible to create rules from scratch on
the Structured Authoring page.

Usability Challenges in Security and Privacy Policy-Authoring Interfaces 145

Lists of
element
values

Original
rule text

Fig. 1. SPARCLE’s Structured Authoring page. Policy authors can create or edit rules
on this page by selecting from the lists of element values in the lower half of the page.

4 Policy Authoring Usability Evaluation

We conducted a laboratory user study using the SPARCLE application to iden-
tify usability problems experienced by users in policy-authoring tasks.

4.1 User Study Method

Participants. We recruited twelve participants, consisting of research staff and
summer interns at a corporate research facility, for the user study. Participants
varied in age from 20 to 49; four were female. Since participants did not have
experience authoring privacy policies or using SPARCLE, we considered them
novice users for our purposes. Participants were compensated for their partici-
pation with a certificate for a free lunch.

Apparatus. Participants accessed SPARCLE through the Internet Explorer web
browser on a computer running Windows XP. SPARCLE ran on a server on a

146 R.W. Reeder et al.

local intranet, so users experienced no network delays. We set up a camera and
voice recorder in the laboratory to record participants’ actions and words.

Training Materials. We presented participants with a 4-page paper tutorial on
how to use SPARCLE to give them a basic introduction to the SPARCLE sys-
tem. The tutorial walked participants through the SPARCLE Natural Language
Authoring and Structured Authoring pages as it had participants write and edit
a two-rule policy. The tutorial took about 15 minutes to complete.

Tasks. We wrote three task scenarios: the “DrugsAreUs” task, the “Bureau
of the Public Debt” task, and the “First Finance” task. The three scenarios
describe medical, government, and finance enterprises, respectively, and thus
cover a broad range of the types of enterprises that require privacy policies in
the real world. Each task scenario described an enterprise and its privacy policy
requirements in language that did not explicitly state rules to be written into
SPARCLE, but suggested content that might go into explicit rules. The intent
of the scenarios was to give participants an idea of what to do, but to have them
come up with their own language for their rules. An example of one of the three
task scenarios, the “DrugsAreUs” task, is listed in Table 1.

Table 1. The task statement given to participants for the DrugsAreUs task, one of
three tasks used in the user study

The Privacy Policy for DrugsAreUs
Our business goals are to answer customer questions when they call in (Customer Service), fulfill
orders for prescriptions while protecting against drug interactions (Pharmacists), and to provide
customers valuable information about special offers (Marketing). In order to make sure our cus-
tomers’ privacy is protected, we make the following promises concerning the privacy of information
we collect at DrugsAreUs. We will only collect information necessary to provide quality service.
We will ask the customers to provide us with full name, permanent address and contact informa-
tion such as telephone numbers and email addresses, and a variety of demographic and personal
information such as date of birth, gender, marital status, social security number, and current med-
ications taken. On occasions where we need to verify a customer’s identity, Customer Service Reps
will only use the social security number to do so. Our pharmacists will use the current medication
information when processing new orders to check for drug interactions.

We will make reports for our internal use that include age and gender breakdowns for specific
drug prescriptions, but will not include other identifying information in the reports and will delete
them after five years. For example, our research department might access customer data to produce
reports of particular drug use by various demographic groups.

Procedure. We asked participants to complete a demographic survey before be-
ginning the user study. We then gave participants the SPARCLE tutorial and
asked them to complete it. We provided help as needed as the participants worked
through the tutorial. After they had completed the tutorial, we instructed par-
ticipants to think aloud during the study [11]. We then presented participants
with tasks. Each participant was presented with two of the three task scenarios
and asked to complete them one at a time. We instructed participants to imagine
they were the Chief Privacy Officer of the enterprise described in each scenario
and to use SPARCLE to author the rules they thought were necessary to protect

Usability Challenges in Security and Privacy Policy-Authoring Interfaces 147

personal information held by the enterprise while still allowing the enterprise to
carry out its business. We counter-balanced the selection and presentation of the
scenarios across participants so that each scenario was presented to eight par-
ticipants and each scenario was the first scenario presented to four participants
and the second scenario presented to four other participants.

Data Collection. The data we collected included text of rules written, video of
participants and the computer screen on which they worked, think-aloud audio,
and results of the demographic survey.

4.2 Data Analysis Method

We performed two data analyses. In the first analysis, we looked at the rules
participants wrote to find errors in rules. In the second analysis, we reviewed
videos and think-aloud audio data to find any additional incidents of errors and
usability problems not found in the first analysis.

First Analysis: Errors in Rules In the first analysis, we read through partici-
pants’ final rules and considered their implementability. An implementable pri-
vacy rule was defined as a rule that can be unambiguously interpreted by an
implementer, which is a human or machine that produces the actionable code
to carry out automated enforcement of a policy’s intentions. With respect to
implementability, we identified seven errors. Two of these errors, undetected
parser errors and unsaved rule changes, are system-specific issues to SPARCLE,
and are not further discussed here, because the objective of this work was to
identify errors that might occur in any interface for policy-authoring. The five
non-system-specific errors we found were group ambiguities, terminology mis-
matches, negative rules, missing elements, and rule conflicts. We identified and
counted occurrences of each type of error. The five errors, criteria used to identify
each type of error, and examples of each error are below:

1. Group ambiguity: Composite terms, i.e., terms that represented a set of
other terms, were used in the same policy as the terms they apparently repre-
sented. This was considered an error for implementation because it was often
not clear exactly which terms were represented by the composite term. For
example, one rule said, “DrugsAreUs can collect necessary information...,”
in which “necessary information” is a composite term presumably represent-
ing data referred to in other rules such as “customer mailing address,” and
“current medications taken.” However, it is not immediately clear just what
data is referred to by “necessary information.” As another example, one rule
contained both the terms “contact information” and “permanent address.”
This would imply that, contrary to common usage, “permanent address”
is not part of “contact information.” An implementer could easily be con-
fused as to whether the term “contact information” used in a different rule
included permanent address data or not.

148 R.W. Reeder et al.

2. Terminology mismatch: Multiple terms were used to refer to the same
object within the same policy. Examples of terminology mismatches included
“email address” and “email addres”; “Financial control” and “Finacial con-
trol”; “gender” and “gender information”; “properly reporting information
to the IRS” and “providing required reports to the IRS.”

3. Negative rule: A rule’s action contained the word “not”. Although SPAR-
CLE is a default-deny policy system, implying that it is only necessary to
specify what is allowed, some participants attempted to write negative rules,
i.e., rules that prohibited access. These rules are unnecessary, and can lead
to confusion on the part of an implementer who is expecting only positive
rules. An example of a negative rule was, “Bureau of the Public Debt can
not use persistent cookies....”

4. Missing element: A rule was missing a required element. The missing ele-
ment was usually purpose. An example of a rule with no purpose was “Cus-
tomer Service Reps can ask full name, permanent address, and medication
taken.”

5. Rule conflict: Two different rules applied to the same situation. Only one
rule conflict was observed in our study. SPARCLE’s policy semantics avoid
most potential for rule conflict by taking the union of all access allowed by
the rules except in the case of conditions, for which the intersection of all
applicable conditions is taken. The one observed example of a rule conflict
included the rules, “Customer Service Reps can access customer name for
the purpose of contacting a customer if the customer has submitted a
request,” and “Customer Service Reps can access customer name for the
purpose of contacting a customer if the customer has expressed a con-
cern.” Since the user category (“Customer Service Reps”), action (“access”),
data category (“customer name”), and purpose (“contacting a customer”)
all match in these rules, taking the intersection of conditions would imply
that “Customer Service Reps can access customer name for the purpose of
contacting a customer” only when both “the customer has submitted a re-
quest” and “the customer has expressed a concern” are true. Thus, in the
case that the customer has submitted a request but not expressed a concern,
the first rule would seem to apply but is in conflict with the latter rule.

Second Analysis: Review of Video and Think-Aloud Data. In the second analysis,
we reviewed video of user sessions and transcripts of user think-aloud data for
critical incidents which indicated errors or other usability problems. We defined
critical incidents in the video as incidents in which users created a rule with
one of the errors indicated in the first analysis but subsequently corrected it.
We defined critical incidents in the think-aloud data as incidents in which users
expressed confusion, concern, or an interface-relevant suggestion. Once we had
identified critical incidents, we classified them according to the error or usability
problem that they indicated. While critical incidents were caused by a variety
of SPARCLE-specific usability problems, only those incidents relevant to the
five general policy-authoring rule errors identified in the first data analysis are
reported here. There were no critical incidents that indicated general rule errors

Usability Challenges in Security and Privacy Policy-Authoring Interfaces 149

not already identified in the first data analysis; thus, the second data analysis
simply served to confirm the results of the first through an independent data
stream.

Below are some typical examples of user statements classified as critical inci-
dents, followed by the error under which we classified them in parentheses:

– “I don’t want to have to write out a long list of types of information without
being able to find a variable that represents that information to be able to
label that information. In this case the label might be personal information
defined to include customer name, address, and phone number.” (Group
ambiguity)

– “I’m not sure how to do negations in this template.” (Negative rule)
– “It says I must specify at least one purpose, and I say, ‘why do I have to

specify at least one purpose?’ ” (Missing element)

5 Results

Results from the two data analyses, combined by adding the unique error in-
stances found in the second analysis to those already found in the first analysis,
are shown in Fig. 2. The errors in Fig. 2 are listed according to total frequency
of occurrence, and within each error, are broken down by the task scenario in
which they occurred. Since 2 of the 3 task scenarios were presented to each of 12
participants, there were 24 total task-sessions, 8 of each of the three scenarios.
Thus, for example, the “group ambiguity” bar in Fig. 2 indicates that group am-
biguity errors occurred in 11 of 24 task-sessions, including 5 of 8 “DrugsAreUs”
sessions, 1 of 8 “Bureau of the Public Debt” sessions, and 5 of 8 “First Finance”
sessions.

5 5

1
3

1
3

3
1

1

5
2

3
1

0

2

4

6

8

10

12

Group
ambiguity

Terminology
mismatch

Negative
rule

Missing
element

Rule conflict

Problem type

In
st

an
ce

s
o

f
p

ro
b

le
m

First Finance

Bureau of the Public Debt

DrugsAreUs

Error

er
ro

r

Fig. 2. Results of first and second data analyses, showing instances of five types of
errors, broken down by task scenario in which they were observed. There were 24 total
task-sessions, 8 sessions for each of the three tasks.

150 R.W. Reeder et al.

Of the five errors, group ambiguity errors were observed most frequently; a
total of 11 instances of group ambiguity errors were found. The other errors, in
order of frequency of occurrence, were terminology mismatches, negative rules,
missing elements, and rule conflicts.

6 Discussion

The errors that participants made in this study suggest the five general policy-
authoring usability challenges listed in the introduction to this paper. The chal-
lenges arise from inherent difficulties in the task of articulating policies; however,
good interface design can help users overcome these difficulties. Group ambigui-
ties suggest that users have a need for composite terms, but also need support to
define these terms unambiguously. Terminology mismatches suggest the need for
the interface to enforce, or at least provide some support for, consistent terminol-
ogy. Negative rules are not necessary in SPARCLE’s default-deny policy-based
system, so users’ attempts to write negative rules suggest that they did not
know or did not understand the default rule. Missing elements are caused by
users’ failure to understand or remember the requirement for certain rule ele-
ments. Finally, rule conflicts are a known problem that a good interface can help
address.

The identification of these five policy-authoring usability challenges is the
primary result of this study. One of these challenges, communicating and enforc-
ing rule structure, had already been anticipated, and SPARCLE’s rule guide on
the Natural Language Authoring page was designed to guide policy authors to
write rules with correct structure. Rule conflicts, a well-known problem in policy-
authoring domains, were also anticipated. SPARCLE, in fact, was designed to
prevent rule conflicts by using a default-deny system and requiring that policy
authors only write rules that mapped exclusively to ALLOW. It is only in the
optional condition element that a conflict is possible in SPARCLE rules, so it
was not surprising that only one rule conflict was observed in the present study.
The remaining three usability challenges observed were largely unanticipated
when SPARCLE was designed. Because of the fairly common failure to antic-
ipate some of the five challenges, in SPARCLE and in other designs discussed
above in the Introduction and below in the Related Work, the identification of
these challenges is a significant contribution.

Before discussing the usability challenges observed, it is worth considering one
methodological concern. Some of the errors revealed, particularly group ambi-
guities and negative rules, and the frequency with which they were observed in
the present study, may have been influenced by the specific task scenarios pre-
sented to users. However, errors, except for the one instance of a rule conflict,
are distributed fairly evenly across the three tasks, so it does not appear that
any one task was responsible for eliciting a particular error type. Furthermore,
the task scenarios were written based on experience with real enterprise policy
authors and real enterprise scenarios, so the errors revealed are very likely to
come up in the real world. However, the frequency values reported here should

Usability Challenges in Security and Privacy Policy-Authoring Interfaces 151

not be taken as necessarily indicative of the relative frequency of occurrence of
these errors in real-world policy work.

Having identified five usability challenges for policy-authoring domains, it is
worth discussing how these challenges might be addressed. Each challenge is
discussed in turn below.

6.1 Supporting Object Grouping

Group ambiguities were caused by users not understanding what terms covered
what other terms. Many solutions already exist to help users with tasks that
involve grouped elements. Perhaps the most prominent grouping solution is the
file system hierarchy browser. A hierarchy browser allows users to create groups,
name groups, add objects to and remove objects from groups, and view group
memberships. Hierarchy browsers may often be appropriate for policy-authoring
tasks. However, hierarchical grouping may not always be sufficient. In file permis-
sions, for instance, system users often belong to multiple, partially-overlapping
groups. Any of a variety of means for visualizing sets or graphs may be useful
here; also needed is a means for interacting with such a visualization to choose
terms to go into policy rules. What visualizations and interaction techniques
would best support grouping for policy authoring is an open problem.

6.2 Enforcing Consistent Terminology

Ambiguous terminology is nearly inevitable, but there are certainly ways to
mitigate the most common causes, which, in this study, included typos and users’
forgetting what term they had previously used to refer to a concept. A spell-
checker could go a long way toward eliminating many typos, like “socail security
number”, in which “social security number” was obviously intended. A domain-
specific thesaurus could help resolve abbreviations, aliases, and cases in which
the same object necessarily has multiple names. For example, a thesaurus could
indicate that “SSN” expands to “social security number”, and that “e-mail”,
“email”, and “email address” all represent the same thing. A display of previously
used terms for an object might help users remember to reuse the same term
when referring to that object again; SPARCLE’s structured lists are an example
of such a display. In some policy-authoring domains, the terminology problem
may be resolved for the policy author by pre-defining terms. For example, in file
permissions, the actions that can be performed on a file are typically pre-defined
by the file system (e.g., read, write, and execute).

6.3 Making Default Rules Clear

Showing default rules may be a trivial matter of including the default rule in in-
terface documentation or in the interface display itself. However, the concept of
a default rule and why it exists may itself be confusing. One method of illustrat-
ing the default rule to users is to present a visualization showing what happens
in unspecified cases [4]. SPARCLE includes such a visualization, although it is
not onscreen at the same time a user is authoring rules [12].

152 R.W. Reeder et al.

6.4 Communicating and Enforcing Rule Structure

SPARCLE already does a fairly good job of enforcing rule structure. Participants
in the present study recovered from forgotten purpose elements in 2 out of 5
cases due to SPARCLE’s prominent display of the phrase “None Selected” as
the purpose element when no purpose was specified; a corresponding “Missing
Purpose” error dialog also helped. Other interaction techniques like wizards,
in which users are prompted for each element in turn, would likely get even
higher rates of correct structure. Which of these techniques or combination of
techniques leads to the fewest missed elements will be the subject of future work.

6.5 Preventing Rule Conflicts

Rule conflicts were rare in this study; the one observed conflict can be attributed
to a lack of awareness about the semantics of the condition element. However,
rule conflicts have been shown to be a serious usability problem in past work in
other policy-authoring domains [10,2,4]. Clearly, interfaces need to make users
aware of conflicts, and if possible, show them how conflicts can be resolved.

Rule conflicts have been the focus of some non-interface-related theoretical
work [13,14]; algorithms exist for detecting conflicts in a variety of policy con-
texts. This work could be leveraged by interface designers. However, the means
for presenting policy conflicts to authors have yet to be evaluated. A few vi-
sualizations and interfaces have attempted to do this, such as those discussed
below in the Related Work [10,2,4], but it is not clear whether they succeed at
conveying conflicts, the need to resolve them, and the means to resolve them to
users.

7 Related Work

Although the present study looked for usability challenges in just one policy-
authoring domain, related work in other domains confirms that the usability
challenges identified here are general problems encountered in a variety of policy-
authoring domains. However, past work has only identified the challenges as
unique to specific domains, rather than as part of the more general policy-
authoring problem.

A need for supporting groups of element values has been found in several
domains. Lederer et al. found a need for supporting groups of people in a user
interface for setting location-disclosure policies in a pervasive computing envi-
ronment so that policies could be scaled to environments with many people [15].
They present an interface for setting location-disclosure policies, but mention
support for grouping as future work. The IBM P3P Policy Editor is a policy-
authoring interface that uses hierarchical browsers to show users how Platform
for Privacy Preferences (P3P) element values are grouped [16]. Zurko et al.’s Vi-
sual Policy Builder, an application for authoring access-control policies, allowed
authors to create and label groups and to set constraints on groups to prevent
conflicts due to group overlaps [17].

Usability Challenges in Security and Privacy Policy-Authoring Interfaces 153

Finding good terminology and using it consistently has long been recognized
as a problem for virtually every user interface [18]. In the policy-authoring area,
Cranor et al. acknowledged the difficulty of finding comprehensible terminology
in developing an interface for allowing users to specify what privacy practices
they prefer in websites with which they interact [5]. Good and Krekelberg found
that the use of four different terms for the same folder confused users in an
interface for specifying shared folders in the KaZaA peer-to-peer file-sharing
application [3].

Communicating default rules has been shown to be a problem in setting file
permissions by both Maxion and Reeder [4] and Cao and Iverson[2]. Cranor
et al. also discuss their efforts to come up with an appropriate default rule and
communicate that rule to users [5]. Good and Krekelberg found that that KaZaA
did not adequately communicate default shared files and folders to users [3].

The above-referenced independent studies of file-permissions-setting inter-
faces, Maxion and Reeder [4] and Cao and Iverson [2], also found that users
have difficulty detecting, understanding, and correcting rule conflicts in access
control systems. Zurko et al. considered the problem of conveying rule conflicts
to users in their design of the Visual Policy Builder [17]. Al-Shaer and Hamed
acknowledge the difficulties that rule conflicts cause for authors of firewall poli-
cies [10]. Besides human-computer interaction work, some theoretical work has
acknowledged the problem of rule conflicts and found algorithms for detecting
conflicts in policies [13,14].

Lederer et al. report five design pitfalls of personal privacy policy-authoring
applications that do not include the same usability challenges listed here, but
do raise the important question of whether configuration-like policy-authoring
interfaces are needed at all [19]. They argue that in personal privacy in pervasive
computing environments, desired policies are so dependent on context, that users
cannot or will not specify them in advance. While their argument is undoubtedly
correct for some domains, there remains a need for up-front policy authoring in
many situations: the system administrator setting up a default policy for users,
the policy maker in an enterprise writing a privacy policy to govern how data
will be handled within the organization, and even the end-user who does not
want to be bothered with constant requests for access, but prefers to specify
up-front what access is allowed.

8 Conclusion

In order to be usable, policy-authoring interfaces, which are needed for a wide
variety of security and privacy applications, must address the five usability chal-
lenges identified in the user study described in this paper: supporting object
grouping, enforcing consistent terminology, making default policy rules clear,
communicating and enforcing rule structure, and preventing rule conflicts. Some
of these issues have been addressed before in domain-specific policy-authoring
interfaces and elsewhere, but all might benefit from novel, general interaction
techniques. As more policy authoring interfaces for users are created to fit the

154 R.W. Reeder et al.

variety of applications that depend on accurate policies, researchers and design-
ers would benefit from considering the five usability challenges discussed in this
paper and creating innovative interaction techniques to address them.

References

1. Karat, J., Karat, C.-M., Brodie, C., Feng, J.: Privacy in information technology:
Designing to enable privacy policy management in organizations. International
Journal of Human-Computer Studies 63(1-2), 153–174 (2005)

2. Cao, X., Iverson, L.: Intentional access management: Making access control usable
for end-users. In: Proceedings of the Second Symposium on Usable Privacy and
Security (SOUPS 2006), New York, NY, pp. 20–31. ACM Press, New York (2006)

3. Good, N.S., Krekelberg, A.: Usability and privacy: a study of Kazaa P2P file-
sharing. In: Proceedings of the ACM SIGCHI Conference on Human Factors in
Computing Systems(CHI 2003), New York, NY, April 2003, pp. 137–144. ACM
Press, New York (2003)

4. Maxion, R.A., Reeder, R.W.: Improving user-interface dependability through miti-
gation of human error. International Journal of Human-Computer Studies 63(1-2),
25–50 (2005)

5. Cranor, L.F., Guduru, P., Arjula, M.: User interfaces for privacy agents. ACM
Transactions on Computer-Human Interaction 13(2), 135–178 (2006)

6. U.S. Senate Sergeant at Arms: Report on the investigation into improper ac-
cess to the Senate Judiciary Committee’s computer system (2004), available at
http://judiciary.senate.gov/testimony.cfm?id=1085\&wit id=2514

7. Karat, C.-M., Karat, J., Brodie, C., Feng, J.: Evaluating interfaces for privacy
policy rule authoring. In: Proceedings of the ACM SIGCHI Conference on Human
Factors in Computing Systems(CHI 2006), New York, NY, pp. 83–92. ACM Press,
New York (2006)

8. Lederer, S., Mankoff, J., Dey, A.K., Beckmann, C.P.: Managing personal infor-
mation disclosure in ubiquitous computing environments. Technical Report UCB-
CSD-03-1257, University of California, Berkeley, Berkeley, CA (2003), available at
http://www.eecs.berkeley.edu/Pubs/TechRpts/2003/CSD-03-1257.pdf

9. Ashley, P., Hada, S., Karjoth, G., Powers, C., Schunter, M.: Enterprise Privacy
Architecture Language (EPAL 1.2). W3C Member Submission 10-Nov-2003 (2003),
available at http:www.w3.org/Submission/EPAL

10. Al-Shaer, E.S., Hamed, H.H.: Firewall Policy Advisor for anomaly discovery and
rule editing. In: Proceedings of the IFIP/IEEE Eighth International Symposium on
Integrated Network Management, New York, NY, March 2003. IFIP International
Federation for Information Processing, pp. 17–30. Springer, Heidelberg (2003)

11. Ericsson, K.A., Simon, H.A.: Protocol Analysis: Verbal Reports as Data. Revised
edn., MIT Press, Cambridge, MA (1993)

12. Brodie, C., Karat, C.M., Karat, J.: An empirical study of natural language parsing
of privacy policy rules using the SPARCLE policy workbench. In: Proceedings of
the 2006 Symposium on Usable Privacy and Security (SOUPS 2006), New York,
NY, July 2006, pp. 8–19. ACM Press, New York (2006)

13. Agrawal, D., Giles, J., Lee, K.-W., Lobo, J.: Policy ratification. In: Proceedings
of the Sixth IEEE International Workshop on Policies for Distributed Systems
and Networks (POLICY 2005), Los Alamitos, CA, June 2005, pp. 223–232. IEEE
Computer Society Press, Los Alamitos (2005)

http://judiciary.senate.gov/testimony.cfm?id=1085&wit_id=2514
http://www.eecs.berkeley.edu/Pubs/TechRpts/2003/CSD-03-1257.pdf
http:www.w3.org/Submission/EPAL

Usability Challenges in Security and Privacy Policy-Authoring Interfaces 155

14. Fisler, K., Krishnamurthi, S., Meyerovich, L.A., Tschantz, M.C.: Verification and
change-impact analysis of access-control policies. In: ICSE 2005, pp. 196–205. IEEE
Computer Society Press, Los Alamitos (2005)

15. Lederer, S., Hong, J.I., Jiang, X., Dey, A.K., Landay, J.A., Mankoff, J.: To-
wards everyday privacy for ubiquitous computing. Technical Report UCB-CSD-
03-1283, University of California, Berkeley, Berkeley, CA (2003), available at
http://www.eecs.berkeley.edu/Pubs/TechRpts/2003/CSD-03-1283.pdf

16. Cranor, L.F.: Web Privacy with P3P. O’Reilly, Sebastopol, CA (2002)
17. Zurko, M.E., Simon, R., Sanfilippo, T.: A user-centered, modular authorization

service built on an RBAC foundation. In: Proceedings 1999 IEEE Symposium on
Security and Privacy, Los Alamitos, CA, May 1999, pp. 57–71. IEEE Computer
Society Press, Los Alamitos (1999)

18. Molich, R., Nielsen, J.: Improving a human-computer dialogue. Communications
of the ACM 33(3), 338–348 (1990)

19. Lederer, S., Hong, J., Dey, A.K., Landay, J.: Personal privacy through understand-
ing and action: Five pitfalls for designers. Personal and Ubiquitous Computing 8(6),
440–454 (2004)

http://www.eecs.berkeley.edu/Pubs/TechRpts/2003/CSD-03-1283.pdf

	Introduction
	Policy Authoring Defined
	The SPARCLE Policy Workbench
	Policy Authoring Usability Evaluation
	User Study Method
	Data Analysis Method

	Results
	Discussion
	Supporting Object Grouping
	Enforcing Consistent Terminology
	Making Default Rules Clear
	Communicating and Enforcing Rule Structure
	Preventing Rule Conflicts

	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

