
Expandable Grids for Visualizing and Authoring Computer
Security Policies

Robert W. Reeder∗ Lujo Bauer∗ Lorrie Faith Cranor∗ Michael K. Reiter∗†
reeder@cs.cmu.edu lbauer@cmu.edu lorrie@cmu.edu reiter@cs.unc.edu

Kelli Bacon‡ Keisha How∗ Heather Strong∗

kbacon@gonzaga.edu khow@cmu.edu hstrong@andrew.cmu.edu

∗Carnegie Mellon University †University of North Carolina ‡Gonzaga University
Pittsburgh, PA, USA Chapel Hill, NC, USA Spokane, WA, USA

ABSTRACT
We introduce the Expandable Grid, a novel interaction tech-
nique for creating, editing, and viewing many types of se-
curity policies. Security policies, such as file permissions
policies, have traditionally been displayed and edited in user
interfaces based on a list of rules, each of which can only be
viewed or edited in isolation. These list-of-rules interfaces
cause problems for users when multiple rules interact, be-
cause the interfaces have no means of conveying the interac-
tions amongst rules to users. Instead, users are left to figure
out these rule interactions themselves. An Expandable Grid
is an interactive matrix visualization designed to address the
problems that list-of-rules interfaces have in conveying poli-
cies to users. This paper describes the Expandable Grid con-
cept, shows a system using an Expandable Grid for setting
file permissions in the Microsoft Windows XP operating sys-
tem, and gives results of a user study involving 36 partici-
pants in which the Expandable Grid approach vastly outper-
formed the native Windows XP file-permissions interface on
a broad range of policy-authoring tasks.

Author Keywords
security, policy, Expandable Grid, file permissions, visual-
ization

ACM Classification Keywords
D.4.6 Security and protection, H.1.2 User/Machine systems,
H.5.2 User Interfaces

INTRODUCTION
Access-control policies are fundamental to providing secure
access to shared data. Good computer security is rooted in
accurate policies that capture the intentions of their authors;
inaccurate policies can lead to denial of service on the one
hand and to compromised resources on the other. Humans
determine these policies, and convey them, through some
user interface, to the access-control systems that implement

c©ACM, 2008. This is the author’s version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The
definitive version was published in Proceedings of the 2008 SIGCHI Con-
ference on Human Factors in Computing Systems.
CHI 2008, April 5 - 10, 2008, Florence, Italy.
Copyright 2008 ACM 1-59593-178-3/07/0004...$5.00.

the policies. It is important that such user interfaces allow
these humans, whom we call policy authors, to convey their
policies accurately. However, research and everyday experi-
ence have shown that the user interfaces we have today for
policy authoring are not usable.

As computing becomes increasingly collaborative, distribut-
ed, and pervasive, data becomes more available, and author-
ing policies to control access to this data becomes both more
necessary and more challenging. In this environment, pol-
icy authoring increasingly falls to end users or non-technical
people. While dedicated system administrators might be
able to invest the time to learn and use complex user inter-
faces, this rising class of novice and occasional policy au-
thors cannot be expected to do the same.

Despite the need for usable policy-authoring interfaces, there
is evidence that widely-used policy-authoring interfaces are
prone to serious errors. The “Memogate” scandal, in which
staffers from one political party on the United States Senate
Judiciary Committee stole the opposing party’s confidential
memos from a file server that the two parties shared, was
caused in part by an inexperienced system administrator’s
error using the Windows NT interface for setting file per-
missions [9]. The administrator had just finished college
and had not completed advanced training in system admin-
istration. Good and Krekelberg showed that the Kazaa file-
sharing user interface misled users into unintentionally shar-
ing confidential data [2]. A study on the usability of file
permissions interfaces showed cases in which users of the
Windows XP file permissions interface made errors that ex-
posed files to unauthorized access [5].

One of the main problems with today’s policy-authoring user
interfaces is that the dominant model they use for displaying
policies—the list-of-rules model—is deficient. List-of-rules
interfaces display a list of the rules that comprise a policy,
but only allow authors to select a single rule at a time for
viewing or editing. A rule is merely a portion of a policy,
so when a rule is viewed in isolation, important contextual
information about the remainder of the policy is unavailable
to the policy author. For example, rules may conflict with
one another, so users need information about other rules to
understand how a given rule will be affected by others. As
another example, one access rule may apply to a group of
objects, and another rule may state what objects are in that



group; the group membership rule may be crucial to under-
standing the effects of the access rule on specific objects.
List-of-rules interfaces do not give any indication of how
rules interact with one another; instead it is left to the policy
author to figure out which rules will interact and how. This
makes policy authoring difficult and error-prone, especially
for novice and occasional authors.

To address the need for better policy-authoring interfaces,
we introduce a new model for displaying and editing poli-
cies: Expandable Grids. An Expandable Grid is a matrix-
based visualization of a policy, in which principals (the users
of a system in which data is shared) are displayed in an inter-
active tree along one axis of the matrix, resources (the data to
which access is to be controlled) are displayed in an interac-
tive tree along the other axis, and the access allowed to each
principal for each resource is shown in colored boxes in the
matrix at the intersection of the two trees. Expandable-Grid-
based policy-authoring interfaces show the effective access
(i.e., the combined effect of all applicable rules) each prin-
cipal will have to each resource, so that policy authors need
not combine rules in their heads to figure out who will be
able to access what. Expandable Grids can be viewed as an
adaptation of Lampson’s access matrix [4] to enable auto-
mated policy management.

We implemented an interface based on the Expandable Grid
concept for setting file permissions in the Windows NTFS
file system. We ran a user study to compare authoring per-
formance on a wide range of authoring tasks between our
interface and the native Windows XP file-permissions inter-
face. The Expandable Grid interface performed vastly bet-
ter in our study; for example, the Expandable Grid interface
achieved a 100% accuracy rate versus a 6% accuracy rate
for the Windows interface for one task, and, on another task
where accuracy rates were similar, achieved a 70% reduction
in time-to-task-completion compared to Windows. We show
specifically why the Expandable Grid interface performed
better and conclude that it is likely a better option than the
list-of-rules model for policy-authoring interface designs for
file permissions and other security-related applications.

PROBLEM DESCRIPTION
In this section, we discuss file permissions as an example
of a policy-authoring domain, list the fundamental opera-
tions a policy-authoring user interface should support, and
show why the list-of-rules model leads to error-prone policy-
authoring interfaces.

File permissions
In a basic file access-control system, there are resources,
principals, and actions. Resources include files and folders,
the data to which access is to be controlled. Principals are
system users and groups of system users. Actions are oper-
ations that may be performed on resources, such as “read,”
“write,” “execute,” and “delete.” A file permissions policy
is a set of rules that state what principals may perform what
actions on which resources. Rules may allow or deny ac-
cess. For example, a rule may state that the user “jsmith” is
allowed to read the file “budget.xls,” or that the user “mary”
is denied access to write to the file “privateData.txt.” Since

a file system may have many principals, file access control
systems typically provide a means for constructing groups,
which are collections of users. For instance, users might be
placed into groups or roles according to their position in an
organization, such as “Managers,” and “Employees.” Simi-
larly, files may be grouped into hierarchical folders. Groups
and folders allow policy authors to write rules that apply to
all components of a composite value, such as a rule that de-
nies delete capability to all employees for files in a folder
called “Critical files.”

Fundamental policy-authoring operations
There are four fundamental operations a policy-authoring in-
terface must support to be successful:

1. Viewing policy. Policy-authoring interfaces should make
it easy to look up what will happen when a given user
tries to access a given resource. Furthermore, they should
include the ability to check general properties the author
would like the policy to have, such as “no one should be
allowed to delete this file,” or “no remote users should
have access to this folder.”

2. Changing policy. Policy-authoring interfaces should al-
low for making rules, which alter the access a policy will
allow. In addition, a policy should be editable, since
policy-authoring is often done in response to some situ-
ation, such as access being denied to someone who needs
it.

3. Viewing composite value memberships. Composite values
(i.e., groups of users or directories of files) make it much
easier to specify policy rules that apply to many individual
input values, such as “All of my friends are allowed to read
files in my ‘Music’ directory.” When a policy author is
setting a rule involving one or more composite values, it is
important to know just what the composite values contain.
A policy-authoring interface should show the individual
members of composite values.

4. Detecting and resolving conflicts. Rule conflicts occur
when two rules apply to a particular request for resources.
This may happen, for example, if a user is explicitly de-
nied access to a resource, but is a member of a group that
is explicitly allowed to access that resource. While policy-
based systems typically adopt some means of resolving
such conflicts, some past work has shown that users have
difficulty understanding how conflicts are resolved [5]. As
a result, conflicts may lead to policies that do not imple-
ment the author’s intentions. A policy-authoring interface
should make sure that conflicts do not cause policies to
deviate from authors’ intentions.

List-of-rules model
File permissions interfaces based on the list-of-rules model
are common. The most widely distributed, and the one we
study in this paper, is the Windows XP file permissions in-
terface, but the model is also used in Linux open source file
permissions managers and in the file permissions interface
for Mac OS X Server. The list-of-rules model is also used
in policy-authoring tools for other domains such as firewall
policies and enterprise privacy policies.



Figure 1. The Windows XP file permissions interface, an example of a list-of-rules policy-authoring interface. These screenshots give an example of
why it is difficult for users to understand an effective policy in the presence of a rule conflict. See text for further explanation.

The Windows XP file permissions interface provides a good
example of a list-of-rules policy-authoring interface and its
limitations. To describe the limitations of the list-of-rules
approach, it is convenient to start with an example task.
Here, we describe the Jana task, one of the 20 tasks we de-
signed for our user study, which is described below. Our
statement of the Jana task reads as follows:

Jana, a Theory 101 TA, complained that when she tried
to change the Four-part Harmony handout to update the
assignment, she was denied access.

Set permissions so that Jana can read and write the
Four-part Harmony.doc file in the Theory 101\Handouts
folder.

Figure 1 shows the state of the Windows XP file permissions
interface after a common error that policy authors make. Au-
thors create a rule stating that Jana is allowed read and write
access to the Four-part Harmony.doc file. Looking at the in-
terface as pictured in the left-hand screenshot in Figure 1, it
appears Jana is now allowed to read and write the file. What
policy authors miss, however, is that Jana is a member of
the group Theory 101 TAs 2006; there is a rule, as can be
seen in the right-hand screenshot in Figure 1 that denies this
group access to read and write the file. Thus, two rules ap-
ply to Jana, one allowing her access and one denying her ac-
cess; this situation is a rule conflict. In Windows, rules that
deny access take precedence in conflicts with rules that al-
low access, so in Jana’s case, she is denied access to the file.
To understand Jana’s situation, the policy author must un-
derstand three things: first, that Jana is in the group Theory
101 TAs 2006; second, that Theory 101 TAs 2006 are denied
write access to the file; and third, that Deny permissions take
precedence over allow permissions. Once these three items
are understood, they need to be remembered and applied to

determine the correct method for completing this task: re-
moving the deny rule for Theory 101 TAs 2006 so that the
rule allowing Jana access will become operative, while the
other members of the group will still be denied access to the
file by default. However, the Windows list-of-rules inter-
face makes it difficult for the policy author to obtain these
three pieces of information. Group membership information
is only available in the Computer Management application,
which is wholly separate from the file permissions interface,
and thus rarely found; the rule applying to Theory 101 TAs
2006 is easily overlooked; and the deny-takes-precedence
rule essentially has to be inferred. It is difficult for novice
or occasional policy authors to complete this task correctly,
even though it is a fairly typical scenario.

EXPANDABLE GRIDS
To address the limitations of the list-of-rules model, we in-
troduce Expandable Grids. An Expandable Grid is a con-
ceptual visualization for displaying security policies to pol-
icy authors and end-users in a graphical format. Expandable
Grids show precisely what a policy allows or does not allow
in a matrix with hierarchical axes that can be expanded or
contracted to show more or less policy detail. Expandable
Grids do not require policy authors to determine subtle in-
teractions among rules; they show the holistic effect of all
policy rules, i.e., the effective policy for each principal and
resource, thus relieving the burden on policy authors of fig-
uring out how rules interact with each other. Expandable
Grids also have the advantage of showing an overview of the
entire policy, thus making it easy, for certain tasks, to see
what portions of the policy need to be examined in detail.

We have designed and implemented a file permissions policy-
authoring user interface based on the Expandable Grid idea.
A screenshot of our interface can be seen in Figure 2. The



Figure 2. Screenshot of our Expandable Grid interface when the Jana
task has been half-completed.

tree along the vertical axis at the left of the interface shows
the resources in a file system. The rotated tree along the hor-
izontal axis at the top of the interface shows the principals.
At the intersection of these two trees is a grid that shows the
access each principal has to each resource. Grid cells each
correspond to one principal and one resource. Each grid cell
is further subdivided into a “subgrid,” a large square divided
into smaller boxes. The subgrids allow the interface to show
a third policy dimension, as long as that dimension has only
a handful of values. In our interface, the subgrid represents
five different types of access. The upper left box in each
group of five boxes indicates read access, the upper right
box indicates write access, the middle left box indicates exe-
cute access, the middle right box indicates delete access, and
the lower box indicates administrate access. Green boxes
(which appear as a medium grey in greyscale) indicate ac-
cess that is allowed, red boxes (which appear dark grey in
greyscale) indicate access that is denied, and yellow boxes
(which appear light grey in greyscale) indicate that items
lower in one or both trees have a mixture of allowed and
denied access.

The screenshot in Figure 2 shows an intermediate state the
interface would be in when the Jana task has been half-com-
pleted. The grid cell at the intersection of “jana” and the
“Four-part Harmony.doc” file is highlighted in the crosshairs.
In the highlighted grid cell, the upper-left box is green, in-
dicating that Jana has already been given read access to the
“Four-part Harmony.doc” file, while the upper-right box is
red, indicating that Jana does not yet have write access.
Clicking on the upper-right box will give Jana write access
and cause the box to turn green. In contrast to the check-
boxes in the Windows file permissions interface, the colored
boxes of the grid indicate the actual access a user will have
to a resource, after all policy settings have been taken into
account. When a red box is clicked on, the policy is changed

so that Jana is now allowed access, and the box turns green;
there is no need to be aware of other rules that may interfere
with the intention to allow her access. Thus, it is much easier
to complete the Jana task using the Expandable Grid inter-
face and to be certain that it has been completed correctly.

When policy is set at the group level, its effects are im-
mediately propagated to the members of the group, so that
the access indicated in the grid is always the access that
will be given. For example, again referencing Figure 2,
if the upper-right box in the grid cell at the intersection
of the group “Theory 101 TAs 2006” and the “Four-part
Harmony.doc” file were clicked to change it from red to
green, the upper-right boxes for all the group’s users—
“chan,” “edna,” “henry,” “jana,” and “kavita”—would all
turn green.

New policy semantics
In order to ensure that clicking on the colored boxes in the
Expandable Grid interface consistently has the same effect,
we changed some of the semantics of Windows file permis-
sions policies. Specifically, we changed the means by which
rule conflicts are resolved. In Windows, when Jana is part
of one group that is allowed access to a file and another that
is denied access to that file, the deny rule takes precedence.
If we were to retain the Windows semantics, clicking on a
red box where a deny rule applies would leave the box red,
rather than changing it to green as the policy author would
expect. Even though clicking on the red box would add an
allow rule, the box would stay red because the existing deny
rule would still take precedence over the new allow rule. By
our revised semantics, the most recently created rule takes
precedence. Thus, if the box corresponding to Jana’s read
access for the “Four-part Harmony.doc” file is red because
of her membership in Theory 101 TAs 2006, but a policy
author clicks on the box to make a rule that allows Jana ac-
cess, this new rule will take precedence over the deny rule
from the group and the box will turn green; Jana will now be
allowed to access the file.

Our revised semantics makes for much easier resolution of
rule conflicts than is possible in Windows. In Windows, re-
solving the Jana task requires either removing the deny per-
mission not only for Jana, but also for all the other users
in the Theory 101 TAs 2006 group, or removing Jana from
the group entirely. Neither solution may be desirable, and in
any case, policy authors find this dilemma confusing, if they
even understand it at all [5].

Our semantics does have a potential drawback, however.
The Imani task we designed for our study, which is de-
scribed below, illustrates this drawback. Our description of
the Imani task reads as follows:

....Two weeks ago, a scandal erupted in the Music De-
partment... someone had been selling exam answers
to the students! You suspected Imani, your fellow TA.
Like the responsible administrator you are, you set file
permissions so that Imani could not access the Answers
folder under any circumstances.
Now, it’s exam grading time, and your fellow TAs need
access to the answers. Make sure they have access to



the Answers folder, but be sure not to let Imani have
access.

Set permissions so that TAs 2007 (except for Imani) can
read the Answers folder.

We set up the policy beforehand to have a deny rule apply-
ing to Imani for the Answers folder. In the Windows seman-
tics, if a participant set a rule allowing the group TAs 2007
(which includes Imani) to read the Answers folder, Imani
would still be denied access to the folder, even if the par-
ticipant completely forgot to make an exception for Imani.
In our semantics, if the participant set a rule allowing the
group TAs 2007 to read the Answers folder, this rule would
override the pre-existing rule denying Imani access, and, un-
less the participant went back and restored the rule denying
Imani access, Imani would be allowed access.

Summary of Expandable Grid features
Our Expandable Grid interface has several features that we
expect to provide advantages over the list-of-rules Windows
XP file permissions interface. In particular, the Grid inter-
face has these features:

• Whole policy. The Grid shows the whole policy, includ-
ing principal/resource combinations for which there is no
explicit rule.

• Effective policy. The Grid shows the effective policy,
while Windows merely shows component rules.

• Group membership information. The Grid integrates group
membership information into the file permissions display,
while Windows puts it in a separate application from the
file permissions interface.

• Simple changes. The Grid requires a simple click on a
colored box to change a permission, while the Windows
interface requires adding a new rule to its list.

• New policy semantics. The Grid’s new policy semantics
allows for easy conflict resolution by simply clicking on a
colored box, the same way any other policy change would
be made.

• Visual pop-out. The Grid allows for easy detection of
anomalous permissions that visually pop out from the rest
of the policy display.

Additional functionality
Our implementation of the Expandable Grid includes two
additional functions worth mentioning: highlighting and
search. Highlighting can be seen in Figure 2. The crosshairs
follow the mouse pointer when it is positioned over the grid
to help authors line up a grid cell with the principal and re-
source for which they wish to view or edit a rule. The search
function can help users navigate a potentially large policy.
Names of principals or resources can be typed into the search
box. If the search term matches all or part of the name of a
principal or resource, the principal or resource will be high-
lighted. If there are multiple search hits, the first will be
highlighted, and other hits can be stepped through using the
“Prev” and “Next” buttons beneath the search box.

RELATED WORK
Several authors have addressed usability concerns in their
own systems for authoring access-control policies. Two sys-
tems, SPARCLE and the HP Select Access Policy Builder,
discussed below, have implemented matrix-based policy vi-
sualizations, but have not published any evaluation of the
matrix-based visualization approach as compared to the list-
of-rules approach.

Lampson was the first to describe access control matrices as
a framework for teaching and reasoning about access con-
trol [4]. However, Lampson was not concerned with user
interfaces, and so did not discuss how access control matri-
ces could be used interactively to author policies.

Zurko et al. designed the Adage system, a policy-based ac-
cess control system for distributed computing systems [8,
11]. Adage included the Visual Policy Builder, a graphi-
cal user interface for supporting policy authoring. Although
Adage included extensive functionality to support all of the
fundamental policy-authoring operations listed above, it still
used a list-of-rules approach: users could view single rules
or lists of rules, but not the full policy implied by the rules.
In fact, Zurko’s usability testing revealed the need for a pol-
icy overview, and she suggested that research in “dynamic
visualization” could be applied to policy visualization [10].

The HP Select Access Policy Builder is an application for
authoring enterprise security and privacy policies [6]. It in-
cludes a user interface that provides a visualization of a pol-
icy in a matrix indexed by principals on one axis and re-
sources on the other. This is very similar to the idea of Ex-
pandable Grids. However, the HP Policy Builder apparently
has no provision for showing additional input dimensions,
such as actions (which we show using the subgrid). More-
over, no user study evaluating the HP Policy Builder has
been published.

Karat et al.’s SPARCLE system is concerned with the prob-
lem of enterprise privacy policy authoring [3]. SPARCLE’s
most notable feature is its natural-language input mechanism
for authoring policy rules, but it also provides a table-based
policy visualization. SPARCLE’s table visualization does
not show hierarchical structure along the axes and its scala-
bility is limited because it uses space-consuming text rather
than graphics in the table cells.

One of the precursors of the current work was Maxion and
Reeder’s Salmon system [5] for authoring file permissions in
Windows XP. The key insight behind Salmon was to show
the effects of rule interactions to policy authors. However,
Salmon remained a list-of-rules interface; the present work
builds on the Salmon insight to show effective policy in a
large visualization.

Cao and Iverson presented Intentional Access Management
(IAM) systems for access control [1]. They define IAM sys-
tems as systems that automatically convert users’ intentions
into policy rules. They demonstrate that their IAM approach
can reduce policy authoring errors compared to an unen-
hanced list-of-rules policy editor, but they do not provide
any means for visualizing a full policy.



Rode et al. designed Impromptu, a file sharing application
that includes a visualization-based user interface for speci-
fying file sharing policies [7]. The Impromptu visualization
depicts users, files, and actions on a pie chart. The visual-
ization is limited, however, to showing policies with small
groups of users (on the order of 6), and apparently cannot
scale to show policies with many users.

USER STUDY METHODOLOGY
We ran a laboratory user study with 36 participants to com-
pare our Expandable Grid interface against the native Win-
dows XP file permissions interface. We used a between-
participants design, so 18 participants used the Grid and 18
used Windows; participants were randomly assigned to an
interface condition. Each participant completed 20 tasks re-
lated to viewing or changing file permissions for a hypothet-
ical Windows NTFS file server. The tasks are described in
the “Task design” section below. We measured accuracy and
time-to-task completion for each task.

Participants
We recruited 36 undergraduates in technical majors (science,
engineering, and mathematics) to participate in the study.
Ten were female. Participants were all daily computer users,
but had never served as system administrators. Thus, our
participant pool was consistent with our target demographic
of novice or occasional access-control-policy authors, and
was of a similar demographic as the system administrator
of the Memogate scandal. While we believe it is important
to make access-control interfaces usable for non-technical
users as well as technical users, we leave testing the Grid on
non-technical users as future work.

Experimental setup
Participants worked on a laptop running the Windows XP
Professional operating system. Task statements were pre-
sented in a Web browser and were available on screen through-
out the task. For participants using Windows, we started the
Computer Management interface in a state that allowed for
viewing system users and groups and opened Windows Help
files related to setting file permissions. For participants us-
ing the Expandable Grid, the Grid application window was
started at an initial size of 800x740 pixels. The laptop screen
resolution was 1280x768.

The data we collected included the policies people created
and screen video and audio of participants thinking aloud.

Task design
We designed a broad range of tasks to test each of the funda-
mental policy-authoring operations in a variety of contexts
and for both small- and large-scale policies. We created a
scenario in which the participant was a teaching assistant
(TA) in a music department, and was assigned to be the ad-
ministrator of a file server that stored materials for classes
in the department. We chose this scenario because it would
be familiar to our participants while allowing for plausible
tasks involving file permissions policies. The 20 tasks were
designed around this scenario. Of these 20 tasks, 10 involved
“small-scale” file permissions policies (involving roughly 50
principals and 50 resources) and 10 involved “large-scale”

policies (roughly 500 principals and 500 resources). Each
small-scale task had a large-scale parallel, so there were 10
pairs of tasks that varied in difficulty and in the fundamen-
tal operation they were testing. Also, each task pair tested
one or more of the specific advantages or drawbacks we
expected the Grid interface to have compared to the Win-
dows interface. The following list describes what each of the
ten task pairs required participants to do and which features
(with reference to labels listed in the “Summary of Expand-
able Grid features” section above) of the Grid interface were
tested by each:

1. Training: Make a simple policy change. The two tasks in
this pair served to help the participant learn the interface
they were using and get used to the scenario.

2. View-simple: Determine a user’s access to a file when
the user was inheriting access from a group. These tasks
tested the Grid’s whole policy and group membership in-
formation features.

3. View-complex: Determine a user’s access to a file when a
rule conflict is present. In this rule conflict, one rule ap-
plying to a specific user and one rule applying to a group
of which that user is member were in conflict. These tasks
tested the Grid’s effective policy feature.

4. Change-simple: Change a principal’s access to a resource.
These tasks tested the Grid’s simple changes feature.

5. Change-complex: Make multiple changes to a policy, in-
cluding one involving a rule conflict. These tasks tested
several of the Grid’s features in one task, including the
whole policy, effective policy, group membership informa-
tion, simple changes, and new policy semantics features.

6. Compare-groups: Search for the intersection between two
groups’ members. These tasks tested the Grid’s group
membership information feature.

7. Conflict-simple: Detect and resolve a conflict in which the
allow access a user is inheriting from a group should be
overridden with an explicit deny rule. These tasks tested
the Grid’s effective policy and simple changes features.

8. Conflict-complex: Detect and resolve a conflict in which
a user is allowed access through one group but denied ac-
cess through another. The Jana task, discussed above, was
the large-scale conflict-complex task. These tasks tested
the Grid’s effective policy, simple changes, and new policy
semantics features.

9. Memogate: Detect that an unauthorized group has been
given access to a resource. Our configuration for these
tasks mimicked the vulnerability that made the Mem-
ogate scandal possible by including a policy rule that gave
full access to all users for all files. These tasks tested
the Grid’s visual pop-out feature, because the unautho-
rized access causes the Grid to show a large area of green
squares where red is expected, while Windows requires
stepping through all rules to find the offending one.

10. Precedence: Allow a group to access a resource, but make
an exception for one individual in the group. The purpose
of these tasks was to demonstrate the drawback of our new
policy semantics (the Imani task, discussed above, was the
small-scale precedence task).



Table 1. Task statements given to participants for the small-scale
conflict-complex and change-complex tasks, 2 of 20 tasks used in the
user study.

Conflict complex
Nigel, another TA, has complained that when he was trying to edit the course
calendar to change the due date for an assignment, he was denied access.
Set permissions so that Nigel can read and write the calendar.scd file.

Change complex
The gradebook file is highly sensitive. Instructors and TAs should be allowed
to read it or write to it, but not delete it. And of course no students should be
allowed to access the gradebook in any way.
Make sure instructors and TAs 2007 can read and write the gradebook.xls file.
Make sure instructors and TAs 2007 cannot delete the gradebook.xls file.
Make sure Students 2007 cannot access the gradebook.xls file in any way.

Examples of the text of task statements presented to partici-
pants can be seen in Table 1.

Some tasks, such as the tasks that involved viewing policy
or group memberships, were multiple choice questions, so
scoring was straightforward. The other tasks required mak-
ing policy changes. For some of these tasks, there were
multiple approaches to completing the task; in all cases, we
scored a participant’s final policy for a task according to
whether they gave the access specified in the task statement;
any extraneous policy settings were ignored.

Procedure
Our experimenter read instructions for our teaching-assistant
scenario to participants. After reading these instructions,
our experimenter read brief training materials that explained
how to search for users and files, how to view permissions,
and how to change permissions using the interface to which
a participant was assigned. The experimenter also walked
the participant through one full task as part of the training.
For Windows participants, the training also covered how to
use the Computer Management application and how to use
the Windows Help files, since we considered those part of
the file permissions interface; no help files were available to
Grid participants. Training took about 3.5 minutes for Grid
participants and about 5.5 minutes for Windows participants.

Participants then began completing tasks. Before each task,
the experimenter brought up the interface in a preconfigured
state tailored to each task. Task statements were then pre-
sented to participants in a Web browser on screen. Partic-
ipants were asked to think aloud while they worked on the
tasks. Participants completed the 10 small-scale tasks first,
then the 10 large-scale tasks. Each set of 10 tasks always
started with the training task, but the order of the remain-
ing 9 tasks were counterbalanced across participants using a
Latin square design to guard against ordering effects.

RESULTS
Our results are in the form of accuracy rates and mean time-
to-task-completion for each interface condition and for each
task. Accuracy rates represent the proportion of partici-
pants in each condition who correctly completed the task.
The mean time-to-task-completion is computed only over
the task completion times of those participants who success-
fully completed each task. Accuracy results can be seen in
Figure 3. Timing results can be seen in Figure 4. Note that
results are only shown for 18 tasks, 9 at each scale, because
we excluded the two training tasks from analysis.

Experiment-wide results
For each metric, accuracy and time-to-task-completion, we
performed an experiment-wide test of the hypothesis that the
Grid interface performed better than the Windows interface
over all tasks. We used logistic regression to test for a signif-
icant difference in accuracy scores between the Grid (overall
accuracy 83.6%) and Windows (overall accuracy 56.5%) in-
terfaces across all tasks. We included interface, scale, and an
interface*scale interaction as factors in our logistic regres-
sion model. The model gave an intercept of 1.52 and coeffi-
cients for interface, scale, and interface*scale of -1.22, 0.23,
and -0.30. The corresponding odds ratios were 0.29, 1.25,
and 0.74. A Wald test of the hypothesis that the interface co-
efficient was not equal to 0 was significant at the 0.05 level
(Z = 7.43, p < 0.001), suggesting that there is an effect of
interface on accuracy. The direction of the interface coef-
ficient indicates that higher accuracy scores were achieved
with the Grid interface. Wald tests of the hypothesis that the
other coefficients were not equal to 0 were not significant
(Z = 0.75, p = 0.45;Z = −0.80, p = 0.42), suggesting
that the Grid interface’s superior accuracy rates compared to
the Windows interface are not affected by scale.

We used a general linear model with log-transformed time-
to-task-completion as the response and interface, scale, and
an interface*scale interaction as factors in the model and
found significant effects of interface (F (1, 450) = 91.15, p <
0.001), scale (F (1, 450) = 49.27, p < 0.001), and inter-
face*scale (F (1, 450) = 20.81, p < 0.001) on time-to-task-
completion. The directions of the effects indicate that using
the Grid (M=53.0 seconds, σ=37.5) led to faster task com-
pletion than using Windows (M=88.3 seconds, σ=62.7), that
large-scale tasks (M=79.4 seconds, σ=51.8) took longer to
complete than small-scale tasks (M=55.2 seconds, σ=49.7),
and that the slowdown from small-scale tasks to large-scale
tasks was greater for the Grid than for Windows.

Task-by-task results
We followed up the experiment-wide tests with a series of
planned tests for significant differences in the accuracy rate
and mean time-to-task-completion between the Grid inter-
face and the Windows interface for selected tasks. We con-
ducted these tests based on our hypotheses as to which in-
terface would perform better in each task. Specifically, we
hypothesized that we would see more accurate performance
using the Grid for the view-simple, view-complex, change-
complex, conflict-simple, conflict-complex, and Memogate
tasks. We hypothesized that we would see more accurate
performance using Windows for the precedence tasks, which
were designed to test the drawback in the Grid’s new policy
semantics. We expected the change-simple and compare-
groups tasks to be easy to complete with both interfaces,
so we did not test for significant differences in accuracy for
those tasks. For the time-to-task-completion data, we hy-
pothesized that the Grid would perform better for all tasks
except the precedence tasks, for which we conducted no test
because we expected the Grid’s drawback to affect accuracy,
but to have little effect on time. In all, we had 30 hypotheses
to test, but could only test 27 due to insufficient timing data
for tasks that were correctly completed by too few Windows
participants.



0.00

0.20

0.40

0.60

0.80

1.00

View-simple View-complex Change-simple Change-complex Compare-groups Conflict-simple Conflict-complex Memogate Precedence

A
cc

u
ra

cy
 r

at
e

Grid, small-scale Windows, small-scale Grid, large-scale Windows, large-scale

Figure 3. Accuracy results, showing proportion of participants correctly completing each task with Grid and Windows interfaces.

0
30
60
90

120
150
180
210
240

View-simple View-complex Change-simple Change-complex Compare-groups Conflict-simple Conflict-complex Memogate Precedence

T
im

e 
(s

)

Grid, small-scale Windows, small-scale Grid, large-scale Windows, large-scale

Figure 4. Time-to-task-completion results, showing mean time-to-task-completion, in seconds, for participants who successfully completed each task
with Grid and Windows interfaces. Error bars show +/- one standard deviation.

To test our hypotheses, we conducted 14 one-sided Fisher’s
Exact Tests on the accuracy rates and 13 one-sided t-tests on
the mean times-to-task-completion. We log-transformed the
time data before testing to ensure that it was normally dis-
tributed, as assumed by the t-test. Since we applied 27 total
statistical tests, we applied the Benjamini-Hochberg multi-
ple testing correction to keep down the probability of a Type
I error in our testing. The correction gave an adjusted per-
test α of 0.024, so we considered only tests with p-values at
or below this adjusted threshold to be significant.

Results of the tests are summarized in Tables 2 and 3. The
27 tests yielded 14 significant results, all in favor of the Grid.
The 14 significant results included 6 significant differences
in accuracy rates and 8 significant differences in mean time-
to-task-completion. There was at least one significant result
for every task pair except the precedence task pair.

Table 2. Summary of statistical tests for significant differences in ac-
curacy rate for Grids (aG) and accuracy rate for Windows (aW ) for
each task. For all tests except precedence task tests, the hypothesis
tested was aG > aW . For the precedence tests, the hypothesis tested
was aG < aW . The p-values shown are from one-sided Fisher’s Exact
Tests; p-values below the α = 0.024 rejection threshold are shaded and
highlighted in bold, indicating significant tests.

Small-scale Large-scale
Task pair aG aW p-value aG aW p-value
View-simple 0.89 0.56 p = 0.03 0.61 0.56 p = 0.50

View-complex 0.94 0.17 p< 0.001 1.00 0.39 p< 0.001

Change-simple 0.89 0.94 No test 1.00 1.00 No test
Change-complex 0.61 0.00 p< 0.001 0.67 0.17 p= 0.003

Compare-groups 0.89 0.83 No test 0.67 0.83 No test
Conflict-simple 0.67 0.61 p = 0.5 0.72 0.61 p = 0.36

Conflict-complex 0.89 0.00 p< 0.001 1.00 0.06 p< 0.001

Memogate 1.00 0.94 p = 0.5 0.94 0.78 p = 0.17
Precedence 0.89 0.94 p = 0.5 0.78 0.78 p = 0.65

DISCUSSION
Our results demonstrate that the Expandable Grid interface
allows authors to complete tasks more accurately and faster
than does the Windows file permissions interface. Because
the tasks selected span the range of fundamental policy-
authoring operations and cover policies of different sizes,
we believe that these results will hold over a broad range
of contexts, tasks, and policy sizes in real applications.

Our expectations about the advantages of the Grid’s features
were borne out by the statistical results of our user study.
In particular, our study demonstrates higher accuracy for the
Grid compared to Windows for the view-complex, change-
complex, and conflict-complex tasks that tested the Grid’s
whole policy, effective policy, group membership informa-
tion, simple changes, and new policy semantics features. The
study also demonstrates faster times-to-task-completion for
tasks that tested these features as well as the small-scale
Memogate task, which tested the visual pop-out feature.

The precedence tasks were designed to test the drawback
(explained above in the “New policy semantics” section) to
the Grid’s new policy semantics, but we did not see signif-
icantly poorer performance with the Grid in these tasks. In
these tasks, participants had to allow access to a group but
keep an exception that denies access to an individual. Our
results suggest that the Grid’s policy visualization may mit-
igate the drawback by helping policy authors realize when
they are overriding an exception they wish to keep and al-
lowing them to restore the exception easily.

Our results suggest that the Grid accuracy gains hold up for
both small- and large-scale policies. However, our statis-
tical analysis did reveal an interface*scale effect that shows
Grid performance slowing down more than Windows perfor-
mance as policies move from the small to the large scale. We
see at least two possible explanations for this effect. First, it



Table 3. Summary of statistical tests for significant differences in mean time-to-task-completion, in seconds, between successful Grid (G) and Windows
(W) participants for each task. For each test, the table shows means (M) and standard deviations (σ) for each interface, and t-statistics and p-values
resulting from one-sided t-tests; p-values at or below the α = 0.024 rejection threshold are shaded and highlighted in bold, indicating significant
tests.

Small-scale Large-scale
Task pair Mean, standard deviation t-statistic p-value Mean, standard deviation t-statistic p-value

View-simple G:M = 28.8, σ = 9.5 t(14) = −4.37 p< 0.001 G:M = 42.3, σ = 9.9 t(14) = −2.17 p= 0.024

W:M = 64.6, σ = 39.9 W:M = 61.3, σ = 25.3

View-complex G:M = 34.8, σ = 19.0 t(2) = −1.64 p = 0.12 G:M = 39.1, σ = 13.7 t(18) = −5.11 p< 0.001

W:M = 55.0, σ = 28.0 W:M = 67.4, σ = 13.7

Change-simple G:M = 29.6, σ = 29.6 t(25) = −3.72 p< 0.001 G:M = 50.4, σ = 40.3 t(25) = 0.13 p = 0.55

W:M = 52.8, σ = 24.2 W:M = 42.4, σ = 14.4

Change-complex G:M = 69.9, σ = 19.1 – – G:M = 100.4, σ = 34.6 t(9) = −3.27 p= 0.005

W: Insufficient data W:M = 143.7, σ = 18.3

Compare-groups G:M = 38.6, σ = 14.0 t(28) = −8.54 p< 0.001 G:M = 111.0, σ = 35.8 t(23) = 0.43 p = 0.33

W:M = 102.6, σ = 36.8 W:M = 126.5, σ = 60.0

Conflict-simple G:M = 54.7, σ = 24.6 t(20) = −3.23 p= 0.002 G:M = 72.8, σ = 41.0 t(18) = −1.25 p = 0.11

W:M = 104.1, σ = 81.0 W:M = 103.1, σ = 64.0

Conflict-complex G:M = 29.4, σ = 12.2 – – G:M = 52.4, σ = 37.3 – –
W: Insufficient data W: Insufficient data

Memogate G:M = 19.8, σ = 15.3 t(32) = −5.41 p< 0.001 G:M = 105.1, σ = 42.0 t(28) = −0.46 p = 0.33

W:M = 66.1, σ = 49.5 W:M = 116.5, σ = 72.0

Precedence G:M = 42.3, σ = 24.6 No test No test G:M = 70.6, σ = 29.3 No test No test
W:M = 117.6, σ = 108.2 W:M = 115.4, σ = 59.7

may be that Windows participants gained more fluency with
their interface than Grid participants did during the small-
scale tasks, which, due to limitations in our study design,
always came before the large-scale tasks. Second, Windows
has in place more advanced search functionality, which may
show greater gains as policies get larger. The first expla-
nation may be a point in the Grid’s favor, because it sug-
gests that policy authors gained fluency with the Grid quite
quickly, so there was little gain to be had through experience.
The second explanation suggests that more effort should be
put into developing more advanced search functionality for
the Grid. Accurately interpreting the interface*scale effect
requires further investigation.

While we have shown that Grids outperform the Windows
interface for accuracy and speed, it is worth considering
some of the limitations of our study methodology. We gave
participants artificial goals in a fictitious scenario with which
they were not already familiar. However, in real policy-
authoring scenarios, goals often arise intermittently and re-
late to the author’s own environment, with which they are
familiar. Thus, some usability problems that arose in our
study, such as searching for files, may not be significant
problems in real scenarios, because, for example, authors
may already know where all of their own files are stored. On
the other hand, real policy authors might encounter usability
problems, such as difficulty refining goals, that were not re-
vealed in our study, since we gave participants very specific
goals. Another limitation of our study methodology is that it
measures accuracy relative to an artificial goal; a better met-
ric for the efficacy of a policy-authoring interface might be
whether it allows authors to write policies that match their

own true intentions. In scoring our data to determine ac-
curacy, we ignored any extraneous rules authors made on
their way to completing a task (e.g., allowing or denying
some access to a user not mentioned in the task statement),
because such extraneous rules were rare in our study and
usually came about when a participant misinterpreted a task
statement. Grid participants created extraneous rules in 8 of
271 tasks that were scored as correct, and Windows partic-
ipants created extraneous rules in 4 of 183 tasks that were
scored as correct, so these extraneous rules would have had
little effect on our results if we had scored them as incor-
rect. In reality, however, such extraneous rules might create
serious security vulnerabilities.

In spite of its apparent advantages over the Windows inter-
face, the Grid interface does have room for improvement.
We observed three main types of errors participants made
with the Grid interface. First were off-by-one errors, in
which the participant had lined up the mouse in a desired col-
umn, then moved it to find the desired row, only to have the
mouse slip, unnoticed, from the desired column into an adja-
cent column. Participants then made the right changes to the
wrong principal. The second common type of error, which
was responsible for the lower-than-expected Grid accuracy
scores in the conflict-simple tasks, occurred in searching for
resources. Some resources in our teaching assistant scenario
had similar names, for example, a folder called “Assignment
1” and a file called “assignment1.pdf.” Some participants,
when searching for the keyword “assignment,” came across
the “assignment1.pdf” file first and assumed they had found
the correct resource, although the task required changes to
the folder. The third common type of error resulted from the



90-degree angle of the text in the tree at the top of the Grid
interface. Participants reported that this rotated text was dif-
ficult to read. This error occurred, for example, in our small-
scale compare-groups task, in which participants had to see
if there was any overlap between 2007’s TAs and 2006’s stu-
dents. Some participants correctly read who the TAs were,
and correctly opened the students group to view its members,
but simply overlooked the name of the overlapping member,
even though it was visible.

These three errors suggest improvements that could be made
to the Grid interface. Several participants explicitly asked
for the ability to lock the Grid interface’s crosshairs on a
given row or column, so that they could then find a desired
item in the other dimension without the mouse slipping off
the locked row or column. Also helpful in this regard might
be some variant on a focus + context visualization, in which
a desired region of the grid could be made much larger than
its surroundings. A focus region would make for a larger
mouse target, and hence for more accurate mouse position-
ing. The second error could be addressed with improved
search features. Although our Grid interface has a search
bar and supports search, its display of multiple search hits is
inconspicuous, and was overlooked by many users. If they
searched for the keyword “assignment,” there would be two
hits, but they may have noticed only one. In contrast, Win-
dows has a much better developed search feature for display-
ing multiple search hits—it shows all search hits in a list with
summary details of each hit. Only one Windows participant
made the error of mistaking the “assignment1.pdf” file for
the “Assignment 1” folder compared with five Grid partic-
ipants who made this error. Finally, the vertical text in the
Grid interface is too difficult to read. A number of solutions
may address this problem: changing the angle to 45 degrees
would probably help somewhat, the letters could be rotated
so that words could be read top-to-bottom, or there could be
an option to rotate the whole tree to be horizontal when it is
not needed to label the grid columns.

CONCLUSION
The results of our user study demonstrate that our Expand-
able Grid interface for authoring file permissions policies is
superior to the Windows XP native file-permissions inter-
face. The results also strongly suggest that the Grid’s supe-
rior performance was due to its features that were designed
to overcome deficiencies in the list-of-rules model. We have
thus provided strong evidence that, from a usability perspec-
tive, the Expandable Grid approach to policy-authoring in-
terface design is preferable to the list-of-rules approach.

ACKNOWLEDGMENTS
We wish to thank Julie Downs, Joel Greenhouse, Bob Kraut,
Howard Seltman, Steve Sheng, and an anonymous reviewer
for help with our statistical analyses; Carolyn Brodie, Clare-
Marie Karat, John Karat, and Peter Malkin, who provided
SPARCLE, the project that inspired the Expandable Grids
concept; and Jason Hong, Cynthia Kuo, and anonymous re-
viewers for comments on early drafts of this paper. This
work was supported in part by National Science Founda-
tion Cyber Trust Grants CNS-0433540 and CNS-0627513,
and U.S. Army Research Office contract no. DAAD19-02-

1-0389 (“Perpetually Available and Secure Information Sys-
tems”) to Carnegie Mellon University’s CyLab.

REFERENCES
1. X. Cao and L. Iverson. Intentional access management:

Making access control usable for end-users. In Proc. of
the Second Symposium on Usable Privacy and Security
(SOUPS 2006), pages 20–31, 2006.

2. N. S. Good and A. Krekelberg. Usability and privacy: a
study of Kazaa P2P file-sharing. In Proceedings of the
ACM SIGCHI Conference on Human Factors in
Computing Systems(CHI 2003), pages 137–144, New
York, NY, April 2003.

3. J. Karat, C.-M. Karat, C. Brodie, and J. Feng. Privacy
in information technology: Designing to enable privacy
policy management in organizations. International
Journal of Human-Computer Studies, 63(1-2):153–174,
July 2005.

4. B. W. Lampson. Protection. Operating Systems Review,
8(1):18–24, January 1974. Reprint of the original from
Proceedings of the Fifth Princeton Symposium on
Information Sciences and Systems (Princeton
University, March, 1971), 437-443.

5. R. A. Maxion and R. W. Reeder. Improving
user-interface dependability through mitigation of
human error. International Journal of
Human-Computer Studies, 63(1-2):25–50, July 2005.

6. M. C. Mont, R. Thyne, and P. Bramhall. Privacy
enforcement with HP Select Access for regulatory
compliance. Technical Report HPL-2005-10, HP
Laboratories Bristol, Bristol, UK, January 2005.
Available at http://www.hpl.hp.com/
techreports/2005/HPL-2005-10.pdf.
Accessed on January 10, 2008.

7. J. Rode, C. Johansson, P. DiGioia, R. S. Filho, K. Nies,
D. H. Nguyen, J. Ren, P. Dourish, and D. Redmiles.
Seeing further: Extending visualization as a basis for
usable security. In Proceedings of the Second
Symposium on Usable Privacy and Security (SOUPS
2006), pages 145–155, 2006.

8. The Open Group Research Institute. Adage system
overview. Available at http://www.memesoft.
com/adage/SystemSpec.ps. Accessed on
September 20, 2006.

9. U.S. Senate Sergeant at Arms. Report on the
investigation into improper access to the Senate
Judiciary Committee’s computer system, March 2004.
Available at http://judiciary.senate.gov/
testimony.cfm?id=1085&wit_id=2514.
Accessed on January 10, 2008.

10. M. E. Zurko. Adage usability testing results: Formal
testing affinity mapping and questionnaire. Available at
http:
//www.memesoft.com/adage/affinity.ps.
Accessed on September 20, 2006.

11. M. E. Zurko, R. Simon, and T. Sanfilippo. A
user-centered, modular authorization service built on an
RBAC foundation. In Proceedings 1999 IEEE
Symposium on Security and Privacy, pages 57–71, Los
Alamitos, CA, May 1999.


